Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36591212
PubMed Central
PMC9798731
DOI
10.1021/acsomega.2c05935
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-Fe2O3) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties. This hybrid material allows for remote manipulation by a magnetic field, even in hazardous and/or highly microbial contaminant environments.
Zobrazit více v PubMed
Nathan C. Resisting antimicrobial resistance. Nat. Rev. Microbiol. 2020, 18, 259–260. 10.1038/s41579-020-0348-5. PubMed DOI
Cattoir V.; Felden B. Future Antibacterial Strategies: From Basic Concepts to Clinical Challenges. J. Infect. Dis. 2019, 220, 350–360. 10.1093/infdis/jiz134. PubMed DOI
Hamblin M. R.; Abrahamse H. Can Light-based Approaches Overcome Antimicrobial Resistance?. Drug Dev. Res. 2019, 80, 48–67. 10.1002/ddr.21453. PubMed DOI PMC
Vinagreiro C. S.; Zangirolami A.; Schaberle F. A.; Nunes S. C. C.; Blanco K. C.; Inada N. M.; da Silva G. J.; Pais A. A. C. C.; Bagnato V. S.; Arnaut L. G.; Pereira M. M. Antibacterial Photodynamic Inactivation of Antibiotic-Resistant Bacteria and Biofilms with Nanomolar Photosensitizer Concentrations. ACS Infect. Dis. 2020, 6, 1517–1526. 10.1021/acsinfecdis.9b00379. PubMed DOI
Reneker D. H.; Chun I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 1996, 7, 216–223. 10.1088/0957-4484/7/3/009. DOI
Li Q.; Mahendra S.; Lyon D. Y.; Brunet L.; Liga M. V.; Li D.; Alvarez P. J. J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Res. 2008, 42, 4591–4602. 10.1016/j.watres.2008.08.015. PubMed DOI
Qu X.; Brame J.; Li Q.; Alvarez P. J. J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 2013, 46, 834–843. 10.1021/ar300029v. PubMed DOI
Arenbergerova M.; Arenberger P.; Bednar M.; Kubat P.; Mosinger J. Light-activated Nanofibre Textiles Exert Antibacterial Effects in the Setting of Chronic Wound Healing. Exp. Dermatol. 2012, 21, 619–624. 10.1111/j.1600-0625.2012.01536.x. PubMed DOI
Kim T. G.; Shin H.; Lim D. W. Biomimetic Scaffolds for Tissue Engineering. Adv. Funct. Mater. 2012, 22, 2446–2468. 10.1002/adfm.201103083. DOI
Kim J.; Kumar R.; Bandodkar A. J.; Wang J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2017, 3, 1600260.10.1002/aelm.201600260. DOI
Sapountzi E.; Braiek M.; Chateaux J.-F.; Jaffrezic-Renault N.; Lagarde F. Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices. Sensors 2017, 17, 1887.10.3390/s17081887. PubMed DOI PMC
Lang K.; Mosinger J.; Kubát P., Chapter 15 Nanofibers and Nanocomposite Films for Singlet Oxygen-Based Applications. In Singlet Oxygen: Applications in Biosciences and Nanosciences, Volume 1; The Royal Society of Chemistry: 2016; Vol. 1, pp. 305–321.
Ugwuja C. G.; Adelowo O. O.; Ogunlaja A.; Omorogie M. O.; Olukanni O. D.; Ikhimiukor O. O.; Iermak I.; Kolawole G. A.; Guenter C.; Taubert A.; Bodede O.; Moodley R.; Inada N. M.; de Camargo A. S. S.; Unuabonah E. I. Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25483–25494. 10.1021/acsami.9b01212. PubMed DOI
Manjón F.; Villén L.; García-Fresnadillo D.; Orellana G. On the Factors Influencing the Performance of Solar Reactors for Water Disinfection with Photosensitized Singlet Oxygen. Environ. Sci. Technol. 2008, 42, 301–307. 10.1021/es071762y. PubMed DOI
Xu T.; Ni D.; Chen X.; Wu F.; Ge P.; Lu W.; Hu H.; Zhu Z.; Chen W. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants. J. Hazard. Mater. 2016, 317, 17–26. 10.1016/j.jhazmat.2016.05.043. PubMed DOI
Chabalala M. B.; Gumbi N. N.; Mamba B. B.; Al-Abri M. Z.; Nxumalo E. N. Photocatalytic Nanofiber Membranes for the Degradation of Micropollutants and Their Antimicrobial Activity: Recent Advances and Future Prospects. Membranes 2021, 11, 678.10.3390/membranes11090678. PubMed DOI PMC
Gephart R. T. III; Coneski P. N.; Wynne J. H. Decontamination of Chemical-Warfare Agent Simulants by Polymer Surfaces Doped with the Singlet Oxygen Generator Zinc Octaphenoxyphthalocyanine. ACS Appl. Mater. Interfaces 2013, 5, 10191–10200. 10.1021/am402897b. PubMed DOI
Jesenská S.; Plíštil L.; Kubát P.; Lang K.; Brožová L.; Popelka S.; Szatmáry L.; Mosinger J. Antibacterial Nanofiber Materials Activated by Light. J. Biomed. Mater. Res., Part A 2011, 99A, 676–683. 10.1002/jbm.a.33218. PubMed DOI
da Silva E. F. F.; Pedersen B. W.; Breitenbach T.; Toftegaard R.; Kuimova M. K.; Arnaut L. G.; Ogilby P. R. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process. J. Phys. Chem. B 2012, 116, 445–461. 10.1021/jp206739y. PubMed DOI
Bregnhøj M.; Westberg M.; Jensen F.; Ogilby P. R. Solvent-dependent Singlet Oxygen Lifetimes: Temperature Effects Implicate Tunneling and Charge-transfer Interactions. Phys. Chem. Chem. Phys. 2016, 18, 22946–22961. 10.1039/C6CP01635A. PubMed DOI
Suchánek J.; Henke P.; Mosinger J.; Zelinger Z.; Kubát P. Effect of Temperature on Photophysical Properties of Polymeric Nanofiber Materials with Porphyrin Photosensitizers. J. Phys. Chem. B 2014, 118, 6167–6174. 10.1021/jp5029917. PubMed DOI
Henke P.; Kozak H.; Artemenko A.; Kubát P.; Forstová J.; Mosinger J. Superhydrophilic Polystyrene Nanofiber Materials Generating O2(1Δg): Postprocessing Surface Modifications toward Efficient Antibacterial Effect. ACS Appl. Mater. Interfaces 2014, 6, 13007–13014. 10.1021/am502917w. PubMed DOI
Henke P.; Lang K.; Kubát P.; Sýkora J.; Šlouf M.; Mosinger J. Polystyrene Nanofiber Materials Modified with an Externally Bound Porphyrin Photosensitizer. ACS Appl. Mater. Interfaces 2013, 5, 3776–3783. 10.1021/am4004057. PubMed DOI
Henke P.; Dolanský J.; Kubát P.; Mosinger J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS Appl. Mater. Interfaces 2020, 12, 18792–18802. 10.1021/acsami.9b23104. PubMed DOI
Zhu K.; Ju Y.; Xu J.; Yang Z.; Gao S.; Hou Y. Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Acc. Chem. Res. 2018, 51, 404–413. 10.1021/acs.accounts.7b00407. PubMed DOI
Chen X.; Cheng L.; Li H.; Barhoum A.; Zhang Y.; He X.; Yang W.; Bubakir M. M.; Chen H. Magnetic Nanofibers: Unique Properties, Fabrication Techniques, and Emerging Applications. ChemistrySelect 2018, 3, 9127–9143. 10.1002/slct.201702480. DOI
Hao S.; Zhang Y.; Meng J.; Liu J.; Wen T.; Gu N.; Xu H. Integration of a Superparamagnetic Scaffold and Magnetic Field To Enhance the Wound-Healing Phenotype of Fibroblasts. ACS Appl. Mater. Interfaces 2018, 10, 22913–22923. 10.1021/acsami.8b04149. PubMed DOI
Sindelo A.; Nyokong T. Magnetic nanoparticle - indium phthalocyanine conjugate embedded in electrospun fiber for photodynamic antimicrobial chemotherapy and photodegradation of methyl red. Heliyon 2019, 5, e0235210.1016/j.heliyon.2019.e02352. PubMed DOI PMC
Modisha P.; Nyokong T. Fabrication of phthalocyanine-magnetic nanoparticles hybrid nanofibers for degradation of Orange-G. J. Mol. Catal. A: Chem. 2014, 381, 132–137. 10.1016/j.molcata.2013.10.012. DOI
Blachowicz T.; Ehrmann A. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 2020, 15, 1558925019900843.10.1177/1558925019900843. DOI
Ge S.; Agbakpe M.; Zhang W.; Kuang L. Heteroaggregation between PEI-Coated Magnetic Nanoparticles and Algae: Effect of Particle Size on Algal Harvesting Efficiency. ACS Appl. Mater. Interfaces 2015, 7, 6102–6108. 10.1021/acsami.5b00572. PubMed DOI
Ludačka P.; Kubát P.; Bosáková Z.; Mosinger J. Antibacterial Nanoparticles with Natural Photosensitizers Extracted from Spinach Leaves. ACS Omega 2022, 7, 1505–1513. 10.1021/acsomega.1c06229. PubMed DOI PMC
Lukashova N. V.; Savchenko A. G.; Yagodkin Y. D.; Muradova A. G.; Yurtov E. V. Structure and magnetic properties of iron oxide nanopowders. Met. Sci. Heat Treat. 2013, 54, 550–554. 10.1007/s11041-013-9547-2. DOI
Vandenberghe R. E.; Barrero C. A.; da Costa G. M.; Van San E.; De Grave E. Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interact. 2000, 126, 247–259. 10.1023/A:1012603603203. DOI
da Costa G. M. PhD Thesis. University of Gent, 1995.
Fock J.; Bogart L. K.; González-Alonso D.; Espeso J. I.; Hansen M. F.; Varón M.; Frandsen C.; Pankhurst Q. A. On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy. J. Phys. D: Appl. Phys. 2017, 50, 265005.10.1088/1361-6463/aa73fa. DOI
Wilkinson F.; Helman W. P.; Ross A. B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data 1993, 22, 113–262. 10.1063/1.555934. DOI
DeRosa M. C.; Crutchley R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233-234, 351–371. 10.1016/S0010-8545(02)00034-6. DOI
Mosinger J.; Jirsák O.; Kubát P.; Lang K.; Mosinger B. Bactericidal Nanofabrics Based on Photoproduction of Singlet Oxygen. J. Mater. Chem. 2007, 17, 164–166. 10.1039/B614617A. DOI
Gonçalves E. S.; Ogilby P. R. “Inside” vs “Outside” Photooxygenation Reactions: Singlet-Oxygen-Mediated Surface Passivation of Polymer Films. Langmuir 2008, 24, 9056–9065. 10.1021/la801353n. PubMed DOI
Bregnhøj M.; Dichmann L.; McLoughlin C. K.; Westberg M.; Ogilby P. R. Uric Acid: A Less-than-Perfect Probe for Singlet Oxygen. Photochem. Photobiol. 2019, 95, 202–210. 10.1111/php.12971. PubMed DOI
Mosinger J.; Mosinger B. Photodynamic Sensitizers Assay: Rapid and Sensitive Iodometric Measurement. Experientia 1995, 51, 106–109. 10.1007/BF01929349. PubMed DOI
Schopfer P.; Plachy C.; Frahry G. Release of Reactive Oxygen Intermediates (Superoxide Radicals, Hydrogen Peroxide, and Hydroxyl Radicals) and Peroxidase in Germinating Radish Seeds Controlled by Light, Gibberellin, and Abscisic Acid. Plant Physiol. 2001, 125, 1591–1602. 10.1104/pp.125.4.1591. PubMed DOI PMC
Casbeer E.; Sharma V. K.; Li X.-Z. Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 2012, 87, 1–14. 10.1016/j.seppur.2011.11.034. DOI
Mosinger J.; Lang K.; Kubát P., Photoactivatable Nanostructured Surfaces for Biomedical Applications. In Light-Responsive Nanostructured Systems for Applications in Nanomedicine, Sortino S., Ed. Springer International Publishing: Cham, 2016; pp. 135–168, 10.1007/978-3-319-22942-3_5. PubMed DOI
Wright T.; Vlok M.; Shapira T.; Olmstead A. D.; Jean F.; Wolf M. O. Photodynamic and Contact Killing Polymeric Fabric Coating for Bacteria and SARS-CoV-2. ACS Appl. Mater. Interfaces 2022, 14, 49–56. 10.1021/acsami.1c14178. PubMed DOI