Luminescent Oxygen Sensor with Self-Sterilization Properties Based on Platinum(II)octaethylporphyrin in Polymeric Nanofibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40093835
PubMed Central
PMC11907296
DOI
10.1021/acsmaterialsau.4c00137
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Optical sensors based on the quenching of the luminescence of platinum(II)octaethylporphyrin (PtOEP) encapsulated in nanofiber polymeric membranes were prepared by electrospinning. The samples were characterized using scanning electron microscopy, confocal luminescence microscopy, absorption spectroscopy, and steady-state and time-resolved luminescence techniques. The properties of the sensors were changed by the selection of different polymeric membranes using polycaprolactone, polystyrene, polyurethane Tecophilic, and poly(vinylidene fluoride-co-hexafluoropropylene) polymers. Among them, biodegradable and biocompatible sensors prepared from polycaprolactone with a high oxygen diffusion coefficient exhibited a fast response time (0.37 s), recovery time (0.58 s), high sensitivity (maximum I 0 /I ratio = 52), reversible luminescent response, and linear Stern-Volmer quenching over the whole range of oxygen contents in both the gas atmosphere and aqueous media. Moreover, the proposed sensors exhibited high antibacterial properties, resulting in self-sterilization character of the membrane surface due to the photogeneration of singlet oxygen. This dual character can find application in the biomedical field, where both properties (oxygen sensing and self-sterilization) can be acquired from the same material.
Zobrazit více v PubMed
Spencer J. A.; Ferraro F.; Roussakis E.; Klein A.; Wu J.; Runnels J. M.; Zaher W.; Mortensen L. J.; Alt C.; Turcotte R.; et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014, 508 (7495), 269–273. 10.1038/nature13034. PubMed DOI PMC
Dmitriev R. I.; Papkovsky D. B. Optical probes and techniques for O2 measurement in live cells and tissue. Cell. Mol. Life Sci. 2012, 69 (12), 2025–2039. 10.1007/s00018-011-0914-0. PubMed DOI PMC
Swartz H. M.; Flood A. B.; Schaner P. E.; Halpern H.; Williams B. B.; Pogue B. W.; Gallez B.; Vaupel P. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Physiol. Rep. 2020, 8 (15), e1454110.14814/phy2.14541. PubMed DOI PMC
Napp J.; Behnke T.; Fischer L.; Würth C.; Wottawa M.; Katschinski D. M.; Alves F.; Resch-Genger U.; Schäferling M. Targeted Luminescent Near-Infrared Polymer-Nanoprobes for In Vivo Imaging of Tumor Hypoxia. Anal. Chem. 2011, 83 (23), 9039–9046. 10.1021/ac201870b. PubMed DOI
Marland J. R. K.; Gray M. E.; Dunare C.; Blair E. O.; Tsiamis A.; Sullivan P.; González-Fernández E.; Greenhalgh S. N.; Gregson R.; Clutton R. E.; et al. Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. Sens. Bio-Sens. Res. 2020, 30, 10037510.1016/j.sbsr.2020.100375. DOI
Wolfbeis O. S. Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BioEssays 2015, 37 (8), 921–928. 10.1002/bies.201500002. PubMed DOI PMC
Melnikov P. V.; Alexandrovskaya A. Y.; Naumova A. O.; Arlyapov V. A.; Kamanina O. A.; Popova N. M.; Zaitsev N. K.; Yashtulov N. A. Optical Oxygen Sensing and Clark Electrode: Face-to-Face in a Biosensor Case Study. Sensors 2022, 22 (19), 7626.10.3390/s22197626. PubMed DOI PMC
Xue R.; Ge C.; Richardson K.; Palmer A.; Viapiano M.; Lannutti J. J. Microscale Sensing of Oxygen via Encapsulated Porphyrin Nanofibers: Effect of Indicator and Polymer “Core” Permeability. ACS Appl. Mater. Interfaces 2015, 7 (16), 8606–8614. 10.1021/acsami.5b00403. PubMed DOI
Wang X.-d.; Wolfbeis O. S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 2014, 43 (10), 3666–3761. 10.1039/C4CS00039K. PubMed DOI
Lim C.-J.; Lee S.; Kim J.-H.; Kil H.-J.; Kim Y.-C.; Park J.-W. Wearable, Luminescent Oxygen Sensor for Transcutaneous Oxygen Monitoring. ACS Appl. Mater. Interfaces 2018, 10 (48), 41026–41034. 10.1021/acsami.8b13276. PubMed DOI
Quaranta M.; Borisov S. M.; Klimant I. Indicators for optical oxygen sensors. Bioanal. Rev. 2012, 4 (2), 115–157. 10.1007/s12566-012-0032-y. PubMed DOI PMC
Penso C. M.; Rocha J. L.; Martins M. S.; Sousa P. J.; Pinto V. C.; Minas G.; Silva M. M.; Goncalves L. M. PtOEP–PDMS-Based Optical Oxygen Sensor. Sensors 2021, 21 (16), 5645.10.3390/s21165645. PubMed DOI PMC
Eaton K.; Douglas P. Effect of humidity on the response characteristics of luminescent PtOEP thin film optical oxygen sensors. Sens. Actuators B Chem. 2002, 82 (1), 94–104. 10.1016/S0925-4005(01)00996-0. DOI
Lee S.-K.; Okura I. Photoluminescent determination of oxygen using metalloporphyrin-polymer sensing systems. Spectrochim. Acta, Part A 1998, 54 (1), 91–100. 10.1016/S1386-1425(97)00206-0. DOI
Yeh T.-S.; Chu C.-S.; Lo Y.-L. Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol–gel matrices. Sens. Actuators B Chem. 2006, 119 (2), 701–707. 10.1016/j.snb.2006.01.051. DOI
Nifiatis F.; Su W.; Haley J. E.; Slagle J. E.; Cooper T. M. Comparison of the Photophysical Properties of a Planar, PtOEP, and a Nonplanar, PtOETPP, Porphyrin in Solution and Doped Films. J. Phys. Chem. A 2011, 115 (47), 13764–13772. 10.1021/jp205110j. PubMed DOI
Dalfen I.; Borisov S. M. Porous matrix materials in optical sensing of gaseous oxygen. Anal. Bioanal. Chem. 2022, 414 (15), 4311–4330. 10.1007/s00216-022-04014-6. PubMed DOI PMC
Wang P.; Liu J.; Li Y.; Li G.; Yu W.; Zhang Y.; Meng C.; Guo S. Recent Advances in Wearable Tactile Sensors Based on Electrospun Nanofiber Platform. Adv. Sens. Res. 2023, 2, 220004710.1002/adsr.202200047. DOI
Presley K. F.; Reinsch B. M.; Cybyk D. B.; Ly J. T.; Schweller R. M.; Dalton M. J.; Lannutti J. J.; Grusenmeyer T. A. Oxygen sensing performance of biodegradable electrospun nanofibers: Influence of fiber composition and core-shell geometry. Sens. Actuators B: Chem. 2021, 329, 12919110.1016/j.snb.2020.129191. DOI
Jesenská S.; Plíštil L.; Kubát P.; Lang K.; Brožová L.; Popelka Š.; Szatmáry L.; Mosinger J. Antibacterial nanofiber materials activated by light. J. Biomed. Mater. Res., Part A 2011, 99A (4), 676–683. 10.1002/jbm.a.33218. PubMed DOI
Kai D.; Prabhakaran M. P.; Jin G.; Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J. Biomed. Mater. Res. 2011, 98B (2), 379–386. 10.1002/jbm.b.31862. PubMed DOI
Dwivedi R.; Kumar S.; Pandey R.; Mahajan A.; Nandana D.; Katti D. S.; Mehrotra D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofac Res. 2020, 10 (1), 381–388. 10.1016/j.jobcr.2019.10.003. PubMed DOI PMC
Guo Y.; Wang X.; Shen Y.; Dong K.; Shen L.; Alzalab A. A. A. Research progress, models and simulation of electrospinning technology: a review. J. Mater. Sci. 2022, 57 (1), 58–104. 10.1007/s10853-021-06575-w. PubMed DOI PMC
Suchánek J.; Henke P.; Mosinger J.; Zelinger Z.; Kubát P. Effect of Temperature on Photophysical Properties of Polymeric Nanofiber Materials with Porphyrin Photosensitizers. J. Phys. Chem. B 2014, 118 (23), 6167–6174. 10.1021/jp5029917. PubMed DOI
Mosinger J.; Mosinger B. Photodynamic sensitizers assay: rapid and sensitive iodometric measurement. Experientia 1995, 51 (2), 106–109. 10.1007/BF01929349. PubMed DOI
Liška V.; Kubát P.; Křtěnová P.; Mosinger J. Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications. ACS Omega 2022, 7 (51), 47986–47995. 10.1021/acsomega.2c05935. PubMed DOI PMC
Henke P.; Lang K.; Kubát P.; Sýkora J.; Šlouf M.; Mosinger J. Polystyrene Nanofiber Materials Modified with an Externally Bound Porphyrin Photosensitizer. ACS Appl. Mater. Interfaces 2013, 5 (9), 3776–3783. 10.1021/am4004057. PubMed DOI
Spada R. M.; Macor L. P.; Hernández L. I.; Ponzio R. A.; Ibarra L. E.; Lorente C.; Chesta C. A.; Palacios R. E. Amplified singlet oxygen generation in metallated-porphyrin doped conjugated polymer nanoparticles. Dyes Pigm. 2018, 149, 212–223. 10.1016/j.dyepig.2017.09.044. DOI
Wilkinson F.; Helman W. P.; Ross A. B. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. J. Phys. Chem. Ref. Data 1995, 24 (2), 663–677. 10.1063/1.555965. DOI
Wilkinson F.; Helman W. P.; Ross A. B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data 1993, 22 (1), 113–262. 10.1063/1.555934. DOI
Henke P.; Kozak H.; Artemenko A.; Kubát P.; Forstová J.; Mosinger J. Superhydrophilic Polystyrene Nanofiber Materials Generating O2(1Δg): Postprocessing Surface Modifications toward Efficient Antibacterial Effect. ACS Appl. Mater. Interfaces 2014, 6 (15), 13007–13014. 10.1021/am502917w. PubMed DOI
Henke P.; Kirakci K.; Kubát P.; Fraiberk M.; Forstová J.; Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Appl. Mater. Interfaces 2016, 8 (38), 25127–25136. 10.1021/acsami.6b08234. PubMed DOI
Eckl D. B.; Hoffmann A. K.; Landgraf N.; Kalb L.; Bäßler P.; Wallner S.; Eichner A.; Huber H.; Hackbarth S.; Bäumler W. Photodynamic inactivation of different pathogenic bacteria on human skin using a novel photosensitizer hydrogel. J. Eur. Acad. Dermatol. Venereol. 2023, 37 (8), 1649–1658. 10.1111/jdv.19113. PubMed DOI
Hasenleitner M.; Plaetzer K. In the Right Light: Photodynamic Inactivation of Microorganisms Using a LED-Based Illumination Device Tailored for the Antimicrobial Application. Antibiotics 2019, 9 (1), 13.10.3390/antibiotics9010013. PubMed DOI PMC
Bae I. K.; Shin J. Y.; Son J. H.; Wang K. K.; Han W. S. Antibacterial effect of singlet oxygen depending on bacteria surface charge. Photodiagnosis Photodyn. Ther. 2022, 39, 10297510.1016/j.pdpdt.2022.102975. PubMed DOI