Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
27981
Cancer Research UK - United Kingdom
PubMed
34089020
DOI
10.1038/s41596-021-00542-0
PII: 10.1038/s41596-021-00542-0
Knihovny.cz E-zdroje
- MeSH
- dechové testy metody MeSH
- dospělí MeSH
- hmotnostní spektrometrie metody MeSH
- ionty MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- těkavé organické sloučeniny analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- těkavé organické sloučeniny MeSH
The analysis of volatile organic compounds (VOCs) within breath for noninvasive disease detection and monitoring is an emergent research field that has the potential to reshape current clinical practice. However, adoption of breath testing has been limited by a lack of standardization. This protocol provides a comprehensive workflow for online and offline breath analysis using selected ion flow tube mass spectrometry (SIFT-MS). Following the suggested protocol, 50 human breath samples can be analyzed and interpreted in <3 h. Key advantages of SIFT-MS are exploited, including the acquisition of real-time results and direct compound quantification without need for calibration curves. The protocol includes details of methods developed for targeted analysis of disease-specific VOCs, specifically short-chain fatty acids, aldehydes, phenols, alcohols and alkanes. A procedure to make custom breath collection bags is also described. This standardized protocol for VOC analysis using SIFT-MS is intended to provide a basis for wider application and the use of breath analysis in clinical studies.
Department of Surgery and Cancer Imperial College London London UK
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
European Parliament and the Council of 21 April 2004. Emissions of volatile organic compounds in paints, varnishes and vehicle refinishing products. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004L0042 (2004).
Spanel, P. & Smith, D. Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom. Rev. 30, 236–267 (2011). PubMed DOI
Smith, D. & Španěl, P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath. J. Breath Res. 11, 047106 (2017). PubMed DOI
Markar, S. R. et al. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer. JAMA Oncol. 4, 970–976 (2018). PubMed DOI PMC
Vadhwana, B. et al. Impact of oral cleansing strategies on exhaled volatile organic compound levels. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8706 (2019).
Oakley-Girvan, I. & Davis, S. W. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: a systematic review. Cancer Biomark. 21, 29–39 (2017). PubMed DOI
Pauling, L., Robinson, A. B., Teranishi, R. & Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl Acad. Sci. USA 68, 2374–2376 (1971). PubMed DOI PMC
de Lacy Costello, B. et al. A review of the volatiles from the healthy human body. J. Breath. Res. 8, 014001 (2014). PubMed DOI
Schleich, F. N. et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med. 200, 444–453 (2019). PubMed DOI
Fowler, S. J., Basanta-Sanchez, M., Xu, Y., Goodacre, R. & Dark, P. M. Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax 70, 320–325 (2015). PubMed DOI
Woodfield, G. et al. Feasibility and acceptability of breath research in primary care: a prospective, cross-sectional, observational study. BMJ Open 11, e044691 (2021). PubMed DOI PMC
Henderson, B. et al. A benchmarking protocol for breath analysis: the peppermint experiment. J. Breath. Res. 14, 046008 (2020). PubMed DOI
Hanna, G. B., Boshier, P. R., Markar, S. R. & Romano, A. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis: a systematic review and meta-analysis. JAMA Oncol. 5, e182815 (2019). PubMed DOI
Aksenov, A. A. et al. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nat. Biotechnol. 39, 169–173 (2021). DOI
Biagini, D. et al. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry. J. Breath. Res. 11, 047110 (2017). PubMed DOI
Bruderer, T. et al. On-line analysis of exhaled breath focus review. Chem. Rev. 119, 10803–10828 (2019). PubMed DOI
Smith, D. & Spanel, P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. Trends Anal. Chem. 30, 945–959 (2011). DOI
Wiley Science Solutions. NIST/EPA/NIH Mass Spectral Library 2020. https://sciencesolutions.wiley.com/solutions/technique/gc-ms/nist-epa-nih-mass-spectral-library-2020-2/
Wiley Science Solutions. Wiley Registry of Mass Spectral Data, 12th Edition. https://sciencesolutions.wiley.com/solutions/technique/gc-ms/wiley-registry-of-mass-spectral-data-12th-edition/
Chin, S. T., Romano, A., Doran, S. L. F. & Hanna, G. B. Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer. Sci. Rep. 8, 5139 (2018). PubMed DOI PMC
Martinez-Lozano, P., Rus, J., Fernandez de la Mora, G., Hernandez, M. & Fernandez de la Mora, J. Secondary electrospray ionization (SESI) of ambient vapors for explosive detection at concentrations below parts per trillion. J. Am. Soc. Mass Spectrom. 20, 287–294 (2009). PubMed DOI
Montuschi, P., Mores, N., Trove, A., Mondino, C. & Barnes, P. J. The electronic nose in respiratory medicine. Respiration 85, 72–84 (2013). PubMed DOI
Behera, B., Joshi, R., Anil Vishnu, G. K., Bhalerao, S. & Pandya, H. J. Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath. Res. 13, 024001 (2019). PubMed DOI
Costanzo, M. T. et al. Portable FAIMS: applications and future perspectives. Int. J. Mass Spectrom. 422, 188–196 (2017). PubMed DOI
Covington, J. A. et al. The application of FAIMS gas analysis in medical diagnostics. Analyst 140, 6775–6781 (2015). PubMed DOI
Gonzalez-Cortes, J. J., Bruneel, J., Ramirez, M. & Walgraeve, C. Effect of hydrophobic fumed silica addition on a biofilter for pentane removal using SIFT-MS. Chemosphere 254, 126738 (2020). PubMed DOI
Smith, D., Cheng, P. & Spanel, P. Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1124–1134 (2002). PubMed DOI
Spanel, P. & Smith, D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clin. Mass Spectrom. 16, 18–24 (2020). DOI
Langford, V. S., Padayachee, D., McEwan, M. J. & Barringer, S. A. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour Fragr. J. 34, 393–410 (2019). DOI
La Nasa, J. et al. SIFT-ing archaeological artifacts: selected ion flow tube-mass spectrometry as a new tool in archaeometry. Talanta 207, 120323 (2020). PubMed DOI
Smith, D., Spanel, P., Herbig, J. & Beauchamp, J. Mass spectrometry for real-time quantitative breath analysis. J. Breath. Res. 8, 027101 (2014). PubMed DOI
Smith, D. & Spanel, P. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 8, 1183–1201 (2016). PubMed DOI
Smith, D., McEwan, M. J. & Spanel, P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube-mass spectrometry analyses. Anal. Chem. 92, 12750–12762 (2020). PubMed DOI
Spanel, P., Dryahina, K. & Smith, D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 249, 230–239 (2006). DOI
Spanel, P., Ji, Y. F. & Smith, D. SIFT studies of the reactions of H3O+, NO+ and O-2(+) with a series of aldehydes and ketones. Int. J. Mass Spectrom. 165, 25–37 (1997). DOI
Lawal, O., Ahmed, W. M., Nijsen, T. M. E., Goodacre, R. & Fowler, S. J. Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics 13, 110 (2017). PubMed DOI PMC
Doran, S. L. F., Romano, A. & Hanna, G. B. Optimisation of sampling parameters for standardised exhaled breath sampling. J. Breath. Res. 12, 016007 (2017). PubMed DOI
Boshier, P. R. et al. On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study. Analyst 136, 3233–3237 (2011). PubMed DOI
Adam, M. E. et al. Mass-spectrometry analysis of mixed-breath, isolated-bronchial-breath, and gastric-endoluminal-air volatile fatty acids in esophagogastric cancer. Anal. Chem. 91, 3740–3746 (2019). PubMed DOI
Ghimenti, S. et al. Comparison of sampling bags for the analysis of volatile organic compounds in breath. J. Breath. Res. 9, 047110 (2015). PubMed DOI
Brůhová Michalčíková, R., Dryahina, K., Smith, D. & Španěl, P. Volatile compounds released by Nalophan; implications for selected ion flow tube mass spectrometry and other chemical ionisation mass spectrometry analytical methods. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8602 (2019).
Horváth, I. et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur. Respir. J. 49, https://doi.org/10.1183/13993003.00965-2016 (2017).
Blanchet, L. et al. Factors that influence the volatile organic compound content in human breath. J. Breath. Res. 11, 016013 (2017). PubMed DOI
Agarwal, A. R., Yin, F. & Cadenas, E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am. J. Respir. Cell Mol. Biol. 51, 284–293 (2014). PubMed DOI
Capone, S. et al. Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers. Biomed. Chromatogr. https://doi.org/10.1002/bmc.4132 (2017).
Ajibola, O. A., Smith, D., Spanel, P. & Ferns, G. A. Effects of dietary nutrients on volatile breath metabolites. J. Nutr. Sci. 2, e34 (2013). PubMed DOI PMC
Baranska, A. et al. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. J. Breath. Res. 7, 037104 (2013). PubMed DOI
Smith, D., Spanel, P. & Davies, S. Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. J. Appl. Physiol. (1985) 87, 1584–1588 (1999). DOI
Bovey, F. et al. Breath acetone as a marker of energy balance: an exploratory study in healthy humans. Nutr. Diabetes 8, 50 (2018). PubMed DOI PMC
Heaney, L. M. & Lindley, M. R. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics 13, 139 (2017). DOI
Decombaz, J. et al. Effect of short-duration lipid supplementation on fat oxidation during exercise and cycling performance. Appl. Physiol. Nutr. Metab. 38, 766–772 (2013). PubMed DOI
Couto, M. et al. Oxidative stress in asthmatic and non-asthmatic adolescent swimmers— a breathomics approach. Pediatr. Allergy Immunol. 28, 452–457 (2017). PubMed DOI
Turner, C., Spanel, P. & Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 27, 321–337 (2006). PubMed DOI
Phillips, M., Greenberg, J. & Sabas, M. Alveolar gradient of pentane in normal human breath. Free Radic. Res. 20, 333–337 (1994). PubMed DOI
Spanel, P., Dryahina, K. & Smith, D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath. Res. 7, 017106 (2013). PubMed DOI
Harshman, S. W. et al. Characterization of standardized breath sampling for off-line field use. J. Breath. Res. 14, 016009 (2019). PubMed DOI
Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8, 17–32 (2013). PubMed DOI
Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005–1018 (2010). PubMed DOI
Trefz, P., Schubert, J. K. & Miekisch, W. Effects of humidity, CO PubMed DOI
Kumar, S. et al. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal. Chem. 85, 6121–6128 (2013). PubMed DOI
Slingers, G. et al. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath. J. Breath. Res. 14, 036006 (2020). PubMed DOI
Boshier, P. R., Marczin, N. & Hanna, G. B. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 1070–1074 (2010). PubMed DOI
Boshier, P. R., Cushnir, J. R., Priest, O. H., Marczin, N. & Hanna, G. B. Variation in the levels of volatile trace gases within three hospital environments: implications for clinical breath testing. J. Breath. Res. 4, 031001 (2010). PubMed DOI
Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 29, 5–15 (1983). PubMed DOI
Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)