Bacterial community-emitted volatiles regulate Arabidopsis growth and root architecture in a distinct manner of those from individual strains
Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40340255
PubMed Central
PMC12177503
DOI
10.1016/j.xplc.2025.101351
PII: S2590-3462(25)00113-0
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, bacterial volatiles, dimethyl disulfide, plant–microbe interactions, sulfur, synthetic communities,
- MeSH
- Arabidopsis * růst a vývoj mikrobiologie účinky léků MeSH
- Bacteria * metabolismus MeSH
- kořeny rostlin * růst a vývoj mikrobiologie anatomie a histologie MeSH
- rhizosféra MeSH
- těkavé organické sloučeniny * metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těkavé organické sloučeniny * MeSH
Volatile organic compounds (VOCs) function as infochemicals and are important means of communication between bacteria and plants. Bacterial VOCs can promote plant growth and protect plants against both biotic and abiotic stresses. Most studies to date have focused on VOCs from single bacterial strains; consequently, very little is known about VOCs emitted by bacterial communities and their role in modulating plant phenotypes. In this work, we showed that VOCs from a root-derived 16-strain synthetic community affect Arabidopsis growth and root system architecture, whereas VOCs from individual strains produce a range of different effects. Removal of key species from the community changed the relative abundances of other strains and altered the VOC composition; however, the effect on plant growth remained the same. We therefore concluded that bacterial VOC-induced modulation of plant responses in the rhizosphere may be an emergent property of bacterial communities, rather than merely the sum of effects exerted by individual species. In total, we detected 135 different volatiles from individual strains, with dimethyl disulfide (DMDS) being the most abundant compound emitted by the community. Correlation analysis predicted several sulfur-containing compounds to promote plant growth, and revealed that exposure to two such VOCs, along with DMDS, leads to plant growth promotion. We also identified plant mutants unresponsive to DMDS, suggesting that its mechanism of action may involve assimilation into S-methylcysteine. Finally, we propose that the ecological role of VOCs is to provide early signaling alerts that prime plants for interaction with the bacterial community through modulation of root exudate composition and accumulation of defense compounds, thereby affecting the bacterial colonization of the plants.
Zobrazit více v PubMed
Abis L., Loubet B., Ciuraru R., Lafouge F., Houot S., Nowak V., Tripied J., Dequiedt S., Maron P.A., Sadet-Bourgeteau S. Reduced microbial diversity induces larger volatile organic compound emissions from soils. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-63091-8. PubMed DOI PMC
Akash M.S.H., Rehman K., Chen S. Spice plant Allium cepa: Dietary supplement for treatment of type 2 diabetes mellitus. Nutrition. 2014;30:1128–1137. doi: 10.1016/J.NUT.2014.02.011. PubMed DOI
Ausma T., De Kok L.J. Atmospheric H2S: Impact on plant functioning. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00743. PubMed DOI PMC
Bai Y., Müller D.B., Srinivas G., Garrido-Oter R., Potthoff E., Rott M., Dombrowski N., Münch P.C., Spaepen S., Remus-Emsermann M., et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–369. doi: 10.1038/nature16192. PubMed DOI
Basak A.K., Piasecka A., Hucklenbroich J., Türksoy G.M., Guan R., Zhang P., Getzke F., Garrido-Oter R., Hacquard S., Strzałka K., et al. ER body-resident myrosinases and tryptophan specialized metabolism modulate root microbiota assembly. New Phytol. 2024;241:329–342. doi: 10.1111/NPH.19289. PubMed DOI
Beck H.C., Hansen A.M., Lauritsen F.R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol. Lett. 2003;220:67–73. doi: 10.1016/S0378-1097(03)00054-5. PubMed DOI
Berková V., Berka M., Štěpánková L., Kováč J., Auer S., Menšíková S., Ďurkovič J., Kopřiva S., Ludwig-Müller J., Brzobohatý B., et al. The fungus Acremonium alternatum enhances salt stress tolerance by regulating host redox homeostasis and phytohormone signaling. Physiol. Plantarum. 2024;176 doi: 10.1111/ppl.14328. PubMed DOI
Blom D., Fabbri C., Connor E.C., Schiestl F.P., Klauser D.R., Boller T., Eberl L., Weisskopf L. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 2011;13:3047–3058. doi: 10.1111/j.1462-2920.2011.02582.x. PubMed DOI
Bulgarelli D., Schlaeppi K., Spaepen S., Ver Loren van Themaat E., Schulze-Lefert P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013;64:807–838. doi: 10.1146/annurev-arplant-050312-120106. PubMed DOI
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Carlström C.I., Field C.M., Bortfeld-Miller M., Müller B., Sunagawa S., Vorholt J.A. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nature Ecology and Evolution. 2019;3:1445–1454. doi: 10.1038/s41559-019-0994-z. PubMed DOI PMC
Castrillo G., Teixeira P.J.P.L., Paredes S.H., Law T.F., De Lorenzo L., Feltcher M.E., Finkel O.M., Breakfield N.W., Mieczkowski P., Jones C.D., et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature. 2017;543:513–518. doi: 10.1038/NATURE21417. PubMed DOI PMC
Chen D.M., Nigam S.N., McConnell W.B. Biosynthesis of Se-methylselenocysteine and S-methylcysteine in Astragalus bisulcatus. Can. J. Biochem. 1970;48:1278–1283. doi: 10.1139/O70-197. PubMed DOI
Chiappero J., Cappellari L.d.R., Sosa Alderete L.G., Palermo T.B., Banchio E., Banchio E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind. Crop. Prod. 2019;139 doi: 10.1016/J.INDCROP.2019.111553. DOI
Dietzen C., Koprivova A., Whitcomb S.J., Langen G., Jobe T.O., Hoefgen R., Kopriva S. The Transcription Factor EIL1 Participates in the Regulation of Sulfur-Deficiency Response. Plant Physiol. 2020;184:2120–2136. doi: 10.1104/pp.20.01192. PubMed DOI PMC
Dufková H., Berka M., Psota V., Brzobohatý B., Černý M. Environmental impacts on barley grain composition and longevity. J. Exp. Bot. 2023;74:1609–1628. doi: 10.1093/jxb/erac498. PubMed DOI
Durán P., Thiergart T., Garrido-Oter R., Agler M., Kemen E., Schulze-Lefert P., Hacquard S. Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell. 2018;175:973–983.e14. doi: 10.1016/j.cell.2018.10.020. PubMed DOI PMC
Fincheira P., Quiroz A. Microbial volatiles as plant growth inducers. Microbiol. Res. 2018;208:63–75. doi: 10.1016/j.micres.2018.01.002. PubMed DOI
Getzke F., Amine Hassani M., Crüsemann M., Malisic M., Zhang P., Ishigaki Y., Böhringer N., Fernández A.J., Wang L., Ordon J., et al. Cofunctioning of bacterial exometabolites drives root microbiota establishment. Proceedings of the National Academy of Sciences of the United States of America. 2023;120 doi: 10.1073/pnas.2221508120. PubMed DOI PMC
Gfeller A., Fuchsmann P., De Vrieze M., Gindro K., Weisskopf L. Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms. 2022;10 doi: 10.3390/microorganisms10081510. PubMed DOI PMC
Groenhagen U., Baumgartner R., Bailly A., Gardiner A., Eberl L., Schulz S., Weisskopf L. Production of Bioactive Volatiles by Different Burkholderia ambifaria Strains. J. Chem. Ecol. 2013;39:892–906. doi: 10.1007/S10886-013-0315-Y/FIGURES/6. PubMed DOI
Groenhagen U., Maczka M., Dickschat J.S., Schulz S. Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5. Beilstein J. Org. Chem. 2014;10:1421–1432. doi: 10.3762/bjoc.10.146. PubMed DOI PMC
Harbort C.J., Hashimoto M., Inoue H., Niu Y., Guan R., Rombolà A.D., Kopriva S., Voges M.J.E.E.E., Sattely E.S., Garrido-Oter R., et al. Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host Microbe. 2020;28:825–837.e6. doi: 10.1016/J.CHOM.2020.09.006. PubMed DOI PMC
Heeg C., Kruse C., Jost R., Gutensohn M., Ruppert T., Wirtz M., Hell R. Analysis of the Arabidopsis O-Acetylserine(thiol)lyase Gene Family Demonstrates Compartment-Specific Differences in the Regulation of Cysteine Synthesis. Plant Cell. 2008;20:168–185. doi: 10.1105/TPC.107.056747. PubMed DOI PMC
Hiruma K., Gerlach N., Sacristán S., Nakano R.T., Hacquard S., Kracher B., Neumann U., Ramírez D., Bucher M., O’Connell R.J., et al. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell. 2016;165:464–474. doi: 10.1016/J.CELL.2016.02.028. PubMed DOI PMC
Hunziker L., Bönisch D., Groenhagen U., Bailly A., Schulz S., Weisskopf L. Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora infestans. Appl. Environ. Microbiol. 2015;81:821–830. doi: 10.1128/AEM.02999-14. PubMed DOI PMC
Joshi J., Saboori-Robat E., Solouki M., Mohsenpour M., Marsolais F. Distribution and possible biosynthetic pathway of non-protein sulfur amino acids in legumes. J. Exp. Bot. 2019;70:4115–4121. doi: 10.1093/JXB/ERZ291. PubMed DOI
Kong H.G., Song G.C., Sim H.J., Ryu C.M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 2021;15:397–408. doi: 10.1038/S41396-020-00759-Z. PubMed DOI PMC
Koprivova A., Kopriva S. Plant secondary metabolites altering root microbiome composition and function. Curr. Opin. Plant Biol. 2022;67 doi: 10.1016/j.pbi.2022.102227. PubMed DOI
Koprivova A., Schuck S., Jacoby R.P., Klinkhammer I., Welter B., Leson L., Martyn A., Nauen J., Grabenhorst N., Mandelkow J.F., et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc. Natl. Acad. Sci. USA. 2019;116:15735–15744. doi: 10.1073/pnas.1818604116. PubMed DOI PMC
Knoester M., Pieterse C.M., Bol J.F., Van Loon L.C. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant Microbe Interact. 1999;12:720–727. doi: 10.1094/MPMI.1999.12.8.720. PubMed DOI
Lahrmann U., Strehmel N., Langen G., Frerigmann H., Leson L., Ding Y., Scheel D., Herklotz S., Hilbert M., Zuccaro A. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol. 2015;207:841–857. doi: 10.1111/NPH.13411. PubMed DOI
Lamers J.G., Schippers B., Geels F.P. In: Cereal Breeding Related to Integrated Cereal Production. Jorna M.L., Slootmaker L.A.J., editors. Pudoc; Wageningen: 1988. Soil-borne diseases of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici, associated with disease resistance; pp. 134–139.
Lin Y.T., Lee C.C., Leu W.M., Wu J.J., Huang Y.C., Meng M. Fungicidal Activity of Volatile Organic Compounds Emitted by Burkholderia gladioli Strain BBB-01. Molecules. 2021;26 doi: 10.3390/MOLECULES26030745. PubMed DOI PMC
Liu H., Brettell L.E. Plant Defense by VOC-Induced Microbial Priming. Trends Plant Sci. 2019;24:187–189. doi: 10.1016/J.TPLANTS.2019.01.008. PubMed DOI
Lo Cantore P., Giorgio A., Iacobellis N.S. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii. Front. Microbiol. 2015;6 doi: 10.3389/FMICB.2015.01082/BIBTEX. PubMed DOI PMC
Loo E.P.I., Tajima Y., Yamada K., Kido S., Hirase T., Ariga H., Fujiwara T., Tanaka K., Taji T., Somssich I.E., et al. Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants. Mol. Plant Microbe Interact. 2022;35:554–566. doi: 10.1094/MPMI-07-21-0185-FI/ASSET/IMAGES/LARGE/MPMI-07-21-0185-FIF7.JPEG. PubMed DOI
Ma K.W., Niu Y., Jia Y., Ordon J., Copeland C., Emonet A., Geldner N., Guan R., Stolze S.C., Nakagami H., et al. Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nat. Plants. 2021;7:814–825. doi: 10.1038/s41477-021-00920-2. PubMed DOI PMC
Martins S.J., Pasche J., Silva H.A.O., Selten G., Savastano N., Abreu L.M., Bais H.P., Garrett K.A., Kraisitudomsook N., Pieterse C.M.J., et al. The Use of Synthetic Microbial Communities to Improve Plant Health. Phytopathology. 2023;113:1369–1379. doi: 10.1094/PHYTO-01-23-0016-IA/ASSET/IMAGES/LARGE/PHYTO-01-23-0016-IAF3.JPEG. PubMed DOI
Martín-Sánchez L., Singh K.S., Avalos M., Van Wezel G.P., Dickschat J.S., Garbeva P. Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein J. Org. Chem. 2019;15:1181–1193. doi: 10.3762/BJOC.15.115. PubMed DOI PMC
McClure R., Farris Y., Danczak R., Nelson W., Song H.-S., Kessell A., Lee J.-Y., Couvillion S., Henry C., Jansson J.K., et al. Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes. mSystems. 2022;7 doi: 10.1128/MSYSTEMS.00372-22. PubMed DOI PMC
Meldau D.G., Meldau S., Hoang L.H., Underberg S., Wünsche H., Baldwin I.T. Dimethyl disulfide produced by the naturally associated bacterium bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell. 2013;25:2731–2747. doi: 10.1105/TPC.113.114744. PubMed DOI PMC
Metsalu T., Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC
Niu B., Paulson J.N., Zheng X., Kolter R. Simplified and representative bacterial community of maize roots. Proc. Natl. Acad. Sci. USA. 2017;114:E2450–E2459. doi: 10.1073/PNAS.1616148114. PubMed DOI PMC
Peñuelas J., Asensio D., Tholl D., Wenke K., Rosenkranz M., Piechulla B., Schnitzler J.P. Biogenic volatile emissions from the soil. Plant Cell Environ. 2014;37:1866–1891. doi: 10.1111/PCE.12340. PubMed DOI
Philipp T.M., Scheller A.S., Krafczyk N., Klotz L.O., Steinbrenner H. Methanethiol: A Scent Mark of Dysregulated Sulfur Metabolism in Cancer. Antioxidants. 2023;12 doi: 10.3390/ANTIOX12091780. PubMed DOI PMC
Piechulla B., Lemfack M.C., Kai M. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ. 2017;40:2042–2067. doi: 10.1111/PCE.13011. PubMed DOI
Pieterse C.M.J., Berendsen R.L., de Jonge R., Stringlis I.A., Van Dijken A.J.H., Van Pelt J.A., Van Wees S.C.M., Yu K., Zamioudis C., Bakker P.A.H.M. Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant Soil. 2021;461:245–263. doi: 10.1007/s11104-020-04786-9. DOI
Pieterse C.M.J., van Wees S.C.M., Hoffland E., van Pelt J.A., van Loon L.C. Systemic Resistance in Arabidopsis Induced by Biocontrol Bacteria Is Independent of Salicylic Acid Accumulation and Pathogenesis-Related Gene Expression. Plant Cell. 1996;8:1225. doi: 10.2307/3870297. PubMed DOI PMC
Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC
Popova A.A., Koksharova O.A., Lipasova V.A., Zaitseva J.V., Katkova-Zhukotskaya O.A., Eremina S.I., Mironov A.S., Chernin L.S., Khmel I.A. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/125704. PubMed DOI PMC
Raza W., Wang J., Jousset A., Friman V.P., Mei X., Wang S., Wei Z., Shen Q. Bacterial community richness shifts the balance between volatile organic compound-mediated microbe–pathogen and microbe–plant interactions. Proc. Biol. Sci. 2020;287:20200403. doi: 10.1098/rspb.2020.0403. PubMed DOI PMC
Raza W., Wei Z., Jousset A., Shen Q., Friman V.-P. Extended Plant Metarhizobiome: Understanding Volatile Organic Compound Signaling in Plant-Microbe Metapopulation Networks. mSystems. 2021;6 doi: 10.1128/MSYSTEMS.00849-21/SUPPL_FILE/REVIEWER-COMMENTS.PDF. PubMed DOI PMC
Rébeillé F., Jabrin S., Bligny R., Loizeau K., Gambonnet B., Van Wilder V., Douce R., Ravanel S. Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:15687–15692. doi: 10.1073/PNAS.0606195103/ASSET/B5D48558-78FA-45F6-A53C-5F369634CD62/ASSETS/GRAPHIC/ZPQ0410637480006.JPEG. PubMed DOI PMC
Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Wei H.X., Paré P.W., Kloepper J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2003;100:4927–4932. doi: 10.1073/pnas.0730845100. PubMed DOI PMC
Ryu C.-M., Weisskopf L., Piechulla B. Springer Singapore; Singapore: 2020. Bacterial Volatile Compounds as Mediators of Airborne Interactions. DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schmidt R., De Jager V., Zühlke D., Wolff C., Bernhardt J., Cankar K., Beekwilder J., Van Ijcken W., Sleutels F., De Boer W., et al. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-00893-3. PubMed DOI PMC
Schulz S., Dickschat J.S. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 2007;24:814–842. doi: 10.1039/B507392H. PubMed DOI
Schulz-Bohm K., Gerards S., Hundscheid M., Melenhorst J., De Boer W., Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 2018;12:1252–1262. doi: 10.1038/s41396-017-0035-3. PubMed DOI PMC
Smith N.A., Kelly D.P. Isolation and Physiological Characterization of Autotrophic Sulphur Bacteria Oxidizing Dimethyl Disulphide as Sole Source of Energy. Microbiology. 1988;134:1407–1417. doi: 10.1099/00221287-134-6-1407. DOI
Stringlis I.A., Yu K., Feussner K., De Jonge R., Van Bentum S., Van Verk M.C., Berendsen R.L., Bakker P.A.H.M., Feussner I., Pieterse C.M.J. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl. Acad. Sci. USA. 2018;115:E5213–E5222. doi: 10.1073/PNAS.1722335115/SUPPL_FILE/PNAS.1722335115.SD06.XLSX. PubMed DOI PMC
Teixeira P.J.P.L., Colaianni N.R., Law T.F., Conway J.M., Gilbert S., Li H., Salas-González I., Panda D., Risco N.M.D., Finkel O.M., et al. Specific modulation of the root immune system by a community of commensal bacteria. Plant Biol. 2021;118 doi: 10.1073/pnas.2100678118/-/DCSupplemental. PubMed DOI PMC
Trapet P., Avoscan L., Klinguer A., Pateyron S., Citerne S., Chervin C., Mazurier S., Lemanceau P., Wendehenne D., Besson-Bard A. The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions. Plant Physiol. 2016;171:675–693. doi: 10.1104/pp.15.01537. PubMed DOI PMC
Tyagi S., Kim K., Cho M., Kui, Lee J. Volatile dimethyl disulfide affects root system architecture of Arabidopsis via modulation of canonical auxin signaling pathways. Environ. Sustain. (Singap). 2019;2:211–216. doi: 10.1007/S42398-019-00060-6. DOI
Vespermann A., Kai M., Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 2007;73:5639–5641. doi: 10.1128/AEM.01078-07. PubMed DOI PMC
Vorholt J.A., Vogel C., Carlström C.I., Müller D.B. Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host Microbe. 2017;22:142–155. doi: 10.1016/J.CHOM.2017.07.004. PubMed DOI
Wang J., Mei X., Wei Z., Raza W., Shen Q. Effect of bacterial intra-species community interactions on the production and activity of volatile organic compounds. Soil Ecol. Lett. 2021;3:32–41. doi: 10.1007/s42832-020-0054-2. DOI
Wang M., Osborn L.J., Jain S., Meng X., Weakley A., Yan J., Massey W.J., Varadharajan V., Horak A., Banerjee R., et al. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell. 2023;186:2839–2852.e21. doi: 10.1016/J.CELL.2023.05.037. PubMed DOI PMC
Watanabe M., Kusano M., Oikawa A., Fukushima A., Noji M., Saito K. Physiological Roles of the β-Substituted Alanine Synthase Gene Family in Arabidopsis. Plant Physiol. 2008;146:310–320. doi: 10.1104/PP.107.106831. PubMed DOI PMC
Weise T., Thürmer A., Brady S., Kai M., Daniel R., Gottschalk G., Piechulla B. VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol. Lett. 2014;352:45–53. doi: 10.1111/1574-6968.12359. PubMed DOI
Weisskopf L., Schulz S., Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 2021;19:391–404. doi: 10.1038/s41579-020-00508-1. PubMed DOI
Wickham H. Springer-Verlag; New York: 2016. ggplot2: Elegant Graphics for Data Analysis.
Wippel K., Tao K., Niu Y., Zgadzaj R., Kiel N., Guan R., Dahms E., Zhang P., Jensen D.B., Logemann E., et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nat. Microbiol. 2021;6:1150–1162. doi: 10.1038/s41564-021-00941-9. PubMed DOI PMC
Wirtz M., Hell R. Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties. J. Plant Physiol. 2006;163:273–286. doi: 10.1016/J.JPLPH.2005.11.013. PubMed DOI
Yuan J., Zhao M., Li R., Huang Q., Raza W., Rensing C., Shen Q. Microbial volatile compounds alter the soil microbial community. Environ. Sci. Pollut. Res. Int. 2017;24:22485–22493. doi: 10.1007/s11356-017-9839-y. PubMed DOI
Zamioudis C., Korteland J., Van Pelt J.A., van Hamersveld M., Dombrowski N., Bai Y., Hanson J., Van Verk M.C., Ling H.Q., Schulze-Lefert P., et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 2015;84:309–322. doi: 10.1111/tpj.12995. PubMed DOI PMC
Zamioudis C., Mastranesti P., Dhonukshe P., Blilou I., Pieterse C.M.J. Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria. Plant Physiol. 2013;162:304–318. doi: 10.1104/PP.112.212597. PubMed DOI PMC
Zhang H., Zhu Y., Wang Y., Jiang L., Shi X., Cheng G. Microbial interactions shaping host attractiveness: insights into dynamic behavioral relationships. Curr. Opin. Insect Sci. 2024;66 doi: 10.1016/j.cois.2024.101275. PubMed DOI
Zhang J., Liu Y.X., Zhang N., Hu B., Jin T., Xu H., Qin Y., Yan P., Zhang X., Guo X., et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 2019;37:676–684. doi: 10.1038/S41587-019-0104-4. PubMed DOI
Zhang P., Spaepen S., Bai Y., Hacquard S., Garrido-Oter R. Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities. ISME Commun. 2021;1 doi: 10.1038/s43705-021-00077-1. PubMed DOI PMC
Zhou X., Zhang J., Shi J., Khashi U Rahman M., Liu H., Wei Z., Wu F., Dini-Andreote F. Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. Microbiome. 2024;12:207. doi: 10.1186/s40168-024-01914-w. PubMed DOI PMC