Robust Automated SIFT-MS Quantitation of Volatile Compounds in Air Using a Multicomponent Gas Standard

. 2023 Dec 06 ; 34 (12) : 2630-2645. [epub] 20231121

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37988479

Selected ion flow tube mass spectrometry, SIFT-MS, has been widely used in industry and research since its introduction in the mid-1990s. Previously described quantitation methods have been advanced to include a gas standard for a more robust and repeatable analytical performance. The details of this approach to calculate the concentrations from ion-molecule reaction kinetics based on reaction times and instrument calibration functions determined from known concentrations in the standard mix are discussed. Important practical issues such as the overlap of product ions are outlined, and best-practice approaches are presented to enable them to be addressed during method development. This review provides a fundamental basis for a plethora of studies in broad application areas that are possible with SIFT-MS instruments.

Zobrazit více v PubMed

Adams N. G.; Smith D. Selected ion flow tube (SIFT) - technique for studying ion-neutral reactions. International Journal of Mass Spectrometry and Ion Processes 1976, 21 (3–4), 349–359. 10.1016/0020-7381(76)80133-7. DOI

Smith D.; Španěl P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. International Reviews in Physical Chemistry 1996, 15 (1), 231–271. 10.1080/01442359609353183. DOI

Smith D.; Španěl P. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Rapid Commun. Mass Spectrom. 1996, 10 (10), 1183–1198. 10.1002/(SICI)1097-0231(19960731)10:10<1183::AID-RCM641>3.0.CO;2-3. PubMed DOI

Španěl P.; Smith D. Selected ion flow tube: A technique for quantitative trace gas analysis of air and breath. Medical and Biological Engineering and Computing 1996, 34 (6), 409–419. 10.1007/BF02523843. PubMed DOI

Španěl P.; Smith D. Selected ion flow tube - Mass spectrometry: Detection and real-time monitoring of flavours released by food products. Rapid Commun. Mass Spectrom. 1999, 13 (7), 585–596. 10.1002/(SICI)1097-0231(19990415)13:7<585::AID-RCM527>3.0.CO;2-K. DOI

Smith D.; Španěl P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrometry Reviews 2005, 24 (5), 661–700. 10.1002/mas.20033. PubMed DOI

Španěl P.; Smith D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrometry Reviews 2011, 30 (2), 236–267. 10.1002/mas.20303. PubMed DOI

Smith D.; McEwan M. J.; Španěl P. Understanding Gas Phase Ion Chemistry Is the Key to Reliable Selected Ion Flow Tube-Mass Spectrometry Analyses. Anal. Chem. 2020, 92 (19), 12750–12762. 10.1021/acs.analchem.0c03050. PubMed DOI

Smith D.; Španěl P.; Demarais N.; Langford V. S.; McEwan M. J. Recent developments and applications of selected ion flow tube mass spectrometry, SIFT-MS. Mass Spectrometry Reviews 2023, e2183510.1002/mas.21835. PubMed DOI PMC

Langford V. S.; Padayachee D.; McEwan M. J.; Barringer S. A. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour and Fragrance Journal 2019, 34 (6), 393–410. 10.1002/ffj.3516. DOI

Perkins M. J.; Langford V. S. Multiple headspace extraction-selected ion flow tube mass spectrometry (MHE-SIFT-MS). Part 1: A protocol for method development and transfer to routine analysis. Rev Sep Sci 2022, 4 (1), e2200110.17145/rss.22.001. DOI

Langford V. S.; Perkins M. J. Untargeted selected ion flow tube mass spectrometry headspace analysis: High-throughput differentiation of virgin and recycled polyethylene pellets. Rapid Commun. Mass Spectrom. 2022, 36 (4), e923010.1002/rcm.9230. PubMed DOI

Hera D.; Langford V. S.; McEwan M. J.; McKellar T. I.; Milligan D. B. Negative Reagent Ions for Real Time Detection Using SIFT-MS. Environments 2017, 4 (1), 16.10.3390/environments4010016. DOI

Španěl P.; Dryahina K.; Smith D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 2006, 249, 230–239. 10.1016/j.ijms.2005.12.024. DOI

Španěl P.; Smith D. Advances in On-line Absolute Trace Gas Analysis by SIFT-MS. Current Analytical Chemistry 2013, 9 (4), 525–539. 10.2174/15734110113099990017. DOI

Španěl P.; Swift S. J.; Dryahina K.; Smith D. Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT-MS. Int. J. Mass Spectrom. 2022, 476, 116835.10.1016/j.ijms.2022.116835. DOI

Perkins M. J.; Langford V. S. Application of Headspace-SIFT-MS to Direct Analysis of Hazardous Volatiles in Drinking Water. Environments 2022, 9 (10), 124.10.3390/environments9100124. DOI

Hartungen E.; Jurschik S.; Jordan A.; Edtbauer A.; Feil S.; Hanel G.; Seehauser H.; Haidacher S.; Schottkowsky R.; Mark L.; Jaksch S.; Agarwal B.; Becker K.; Mayhew C. A.; Sulzer P.; Mark T. D. Proton transfer reaction-mass spectrometry: fundamentals, recent advances and applications. European Physical Journal-Applied Physics 2013, 61 (2), 24303.10.1051/epjap/2012120401. DOI

Dryahina K.; Španěl P. A convenient method for calculation of ionic diffusion coefficients for accurate selected ion flow tube mass spectrometry, SIFT-MS. Int. J. Mass Spectrom. 2005, 244 (2–3), 148–154. 10.1016/j.ijms.2005.06.001. DOI

Španěl P.; Smith D. Quantitative selected ion flow tube mass spectrometry: The influence of ionic diffusion and mass discrimination. J. Am. Soc. Mass Spectrom. 2001, 12 (7), 863–872. 10.1016/S1044-0305(01)00253-7. PubMed DOI

Su T.; Chesnavich W. J. Parametrization of the ion-polar molecule collision rate-constant by trajectory calculations. J. Chem. Phys. 1982, 76 (10), 5183–5185. 10.1063/1.442828. DOI

Bouchoux G.; Salpin J. Y.; Leblanc D. A relationship between the kinetics and thermochemistry of proton transfer reactions in the gas phase. International Journal of Mass Spectrometry and Ion Processes 1996, 153 (1), 37–48. 10.1016/0168-1176(95)04353-5. DOI

Langevin P. Une formule fondamentale de théorie cinétique. Ann. Chem. Phys. 1905, 5, 245–288.

Su T.; Chesnavich W. J. Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. The Journal of Chemical Physics 1982, 76 (10), 5183–5185. 10.1063/1.442828. DOI

Smith D.; Pysanenko A.; Španěl P. Ionic diffusion and mass discrimination effects in the new generation of short flow tube SIFT-MS instruments. Int. J. Mass Spectrom. 2009, 281 (1–2), 15–23. 10.1016/j.ijms.2008.11.007. DOI

Currie L. A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities1Adapted from the International Union of Pure and Applied Chemistry (IUPAC) document “Nomenclature in Evaluation of Analytical Methods including Detection and Quantification Capabilities”, which originally appeared in Pure and Applied Chemistry, 67 1699–1723 (1995) © 1995 IUPAC. Republication permission granted by IUPAC.1: (IUPAC Recommendations 1995). Anal. Chim. Acta 1999, 391 (2), 105–126. 10.1016/S0003-2670(99)00104-X. DOI

Španěl P.; Smith D. Progress in SIFT-MS; breath analysis and other applications. Mass Spectrom. Rev. 2011, 30, 236–267. 10.1002/mas.20303. PubMed DOI

Španěl P.; Smith D. Dissociation of H3O+, NO+ and O2+• reagent ions injected into nitrogen carrier gas in SIFT-MS and reactivity of the ion fragments. Int. J. Mass Spectrom. 2020, 458, 116438.10.1016/j.ijms.2020.116438. DOI

Wilson P. F.; Freeman C. G.; McEwan M. J. Reactions of small hydrocarbons with H3O+, O2+ and NO+ ions. Int. J. Mass Spectrom. 2003, 229 (3), 143–149. 10.1016/S1387-3806(03)00290-2. DOI

Taipale R.; Ruuskanen T. M.; Rinne J.; Kajos M. K.; Hakola H.; Pohja T.; Kulmala M. Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS - measurement, calibration, and volume mixing ratio calculation methods. Atmospheric Chemistry and Physics 2008, 8 (22), 6681–6698. 10.5194/acp-8-6681-2008. DOI

Španěl P.; Smith D. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath. Rapid Commun. Mass Spectrom. 2000, 14 (20), 1898–1906. 10.1002/1097-0231(20001030)14:20<1898::AID-RCM110>3.0.CO;2-G. PubMed DOI

Španěl P.; Smith D. Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several aromatic and aliphatic monosubstituted halocarbons. Int. J. Mass Spectrom. 1999, 189 (2–3), 213–223. 10.1016/S1387-3806(99)00103-7. DOI

Perkins M. J.; Langford V. S. Standard Validation Protocol for Selected Ion Flow Tube Mass Spectrometry Methods Applied to Direct Headspace Analysis of Aqueous Volatile Organic Compounds. Anal. Chem. 2021, 93 (24), 8386–8392. 10.1021/acs.analchem.1c01310. PubMed DOI

Španěl P.; Smith D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of alcohols. Int. J. Mass Spectrom. 1997, 167, 375–388. 10.1016/S0168-1176(97)00085-2. DOI

Perkins M. J.; Padayachee D.; Langford V. S., Rapid Classification of Beer using Targeted SIFT-MS Headspace Analysis. Anatune; 2021; APN-066.

Španěl P.; Ji Y. F.; Smith D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of aldehydes and ketones. Int. J. Mass Spectrom. 1997, 165, 25–37. 10.1016/S0168-1176(97)00166-3. DOI

Langford V. S.; Du Bruyn C.; Padayachee D. An evaluation of selected ion flow tube mass spectrometry for rapid instrumental determination of paper type, origin and sensory attributes. Packaging Technology and Science 2021, 34 (4), 245–260. 10.1002/pts.2555. DOI

Smith D.; Chippendale T. W. E.; Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O+ and NO+ with a series of volatile aldehydes of biogenic significance. Rapid Commun. Mass Spectrom. 2014, 28 (17), 1917–1928. 10.1002/rcm.6977. PubMed DOI

Perkins M. J.; Langford V. S. Application of Routine Analysis Procedures to a Direct Mass Spectrometry Technique: Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). Reviews in Separation Sciences 2021, 3 (2), e2100310.17145/rss.21.003. DOI

Son H. D.; An J. G.; Ha S. Y.; Kim G. B.; Yim U. H. Development of Real-time and Simultaneous Quantification of Volatile Organic Compounds in Ambient with SIFT-MS (Selected Ion Flow Tube-Mass Spectrometry). Journal of Korean Society for Atmospheric Environment 2018, 34 (3), 393–405. 10.5572/KOSAE.2018.34.3.393. DOI

Hastie C.; Thompson A.; Perkins M.; Langford V. S.; Eddleston M.; Homer N. Z. M. Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) as an Alternative to Gas Chromatography/Mass Spectrometry (GC/MS) for the Analysis of Cyclohexanone and Cyclohexanol in Plasma. ACS Omega 2021, 6 (48), 32818–32822. 10.1021/acsomega.1c03827. PubMed DOI PMC

Dryahina K.; Pehal F.; Smith D.; Španěl P. Quantification of methylamine in the headspace of ethanol of agricultural origin by selected ion flow tube mass spectrometry. Int. J. Mass Spectrom. 2009, 286 (1), 1–6. 10.1016/j.ijms.2009.06.002. DOI

Lacko M.; Wang N. J.; Sovova K.; Pasztor P.; Španěl P. Addition of fast gas chromatography to selected ion flow tube mass spectrometry for analysis of individual monoterpenes in mixtures. Atmos. Meas. Tech. 2019, 12 (9), 4965–4982. 10.5194/amt-12-4965-2019. DOI

Langford V. S.; Padayachee D.; Bell K. J.; Ma J. High-Throughput Thermal Desorption Analysis of Volatile Compounds Using Selected Ion Flow Tube Mass Spectrometry. Chromatog. Today 2021, 14 (3), 30–34.

Dryahina K.; Smith D.; Španěl P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24 (9), 1296–1304. 10.1002/rcm.4513. PubMed DOI

Questions and answers for marketing authorisation holders/applicants on the CHMP Opinion for the Article 5(3) of Regulation (EC) No 726/2004 referral on nitrosamine impurities in human medicinal products. European Medicines Agency; 2021; EMA/409815/2020 Rev.16.

Control of Nitrosamine Impurities in Human Drugs. Center for Drug Evaluation and Research; 2021; FDA-2020-D-1530.

Langford V. S.; Gray J. D. C.; Maclagan R. G. A. R.; Milligan D. B.; McEwan M. J. Real-time measurements of nitrosamines in air. Int. J. Mass spectrom. 2015, 377, 490–495. 10.1016/j.ijms.2014.04.001. DOI

LabSyft Compound Library. Syft Technologies Limited: Christchurch, 2012.

Swift S. J.; Dryahina K.; Lehnert A.-S.; Demarais N.; Langford V. S.; Perkins M. J.; Silva L. P.; Gnioua M. O.; Spanel P.. Accurate selected ion flow tube mass spectrometry quantification of ethylene oxide contamination in the presence of acetaldehyde. Anal. Methods 2023, 10.1039/D3AY01036H. PubMed DOI

Smith D.; Spanel P.; Demarais N.; Langford V. S.; McEwan M. J. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). Mass Spectrometry Reviews 2023, e21835.10.1002/mas.21835. PubMed DOI PMC

Brůhová Michalčíková R.; Španěl P. A selected ion flow tube study of the ion molecule association reactions of protonated (MH+), nitrosonated (MNO+) and dehydroxidated (M-OH)(+) carboxylic acids (M) with H2O. Int. J. Mass Spectrom. 2014, 368, 15–22. 10.1016/j.ijms.2014.04.010. DOI

Sovová K.; Dryahina K.; Španěl P. Selected ion flow tube (SIFT) studies of the reactions of H3O+, NO+ and O2+• with six volatile phytogenic esters. Int. J. Mass Spectrom. 2011, 300 (1), 31–38. 10.1016/j.ijms.2010.11.021. DOI

Langford V. S.; McEwan M. J.; Perkins M. J. High-Throughput Analysis of Volatile Compounds in Air, Water, and Soil Using SIFT-MS. Curr Trends Mass Spectrom. 2018, 37 (7), 24–29.

Langford V. S.; Billiau C.; McEwan M. J. Evaluation of the Efficacy of SIFT-MS for Speciation of Wastewater Treatment Plant Odors in Parallel with Human Sensory Analysis. Environments 2020, 7, 90.10.3390/environments7100090. DOI

Benchennouf A.; Corion M.; Dizon A.; Zhao Y.; Lammertyn J.; De Coninck B.; Nicolaï B.; Vercammen J.; Hertog M. Increasing the Robustness of SIFT-MS Volatilome Fingerprinting by Introducing Notional Analyte Concentrations. J. Am. Soc. Mass Spectrom. 2023, 34, 2407.10.1021/jasms.3c00168. PubMed DOI

Kharbach M.; Kamal R.; Mansouri M. A.; Marmouzi I.; Viaene J.; Cherrah Y.; Alaoui K.; Vercammen J.; Bouklouze A.; Vander Heyden Y. Selected-ion flow-tube mass-spectrometry (SIFT-MS) fingerprinting versus chemical profiling for geographic traceability of Moroccan Argan oils. Food Chem. 2018, 263, 8–17. 10.1016/j.foodchem.2018.04.059. PubMed DOI

Bajoub A.; Medina-Rodríguez S.; Ajal E. A.; Cuadros-Rodríguez L.; Monasterio R. P.; Vercammen J.; Fernández-Gutiérrez A.; Carrasco-Pancorbo A. A metabolic fingerprinting approach based on selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics: A reliable tool for Mediterranean origin-labeled olive oils authentication. Food Res. Int. 2018, 106, 233–242. 10.1016/j.foodres.2017.12.027. PubMed DOI

Stefanuto P.-H.; Zanella D.; Vercammen J.; Henket M.; Schleich F.; Louis R.; Focant J.-F. Multimodal combination of GC × GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath. Scientific Reports 2020, 10 (1), 16159.10.1038/s41598-020-73408-2. PubMed DOI PMC

Segers K.; Slosse A.; Viaene J.; Bannier M. A. G. E.; Van de Kant K. D. G.; Dompeling E.; Van Eeckhaut A.; Vercammen J.; Vander Heyden Y. Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021, 225, 122080.10.1016/j.talanta.2021.122080. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...