Ternary association reactions of H3 O+ , NO+ and O2 +• with N2 , O2 , CO2 and H2 O; implications for selected ion flow tube mass spectrometry analyses of air and breath
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
21-25486S
Grantová Agentura České Republiky
Czech Science Foundation
PubMed
34904315
DOI
10.1002/rcm.9241
Knihovny.cz E-zdroje
- MeSH
- dechové testy MeSH
- hmotnostní spektrometrie MeSH
- ionty chemie MeSH
- kyslík chemie MeSH
- lidé MeSH
- oxid dusnatý chemie MeSH
- oxid uhličitý chemie MeSH
- reaktivní formy kyslíku chemie MeSH
- těkavé organické sloučeniny chemie MeSH
- voda chemie MeSH
- vzduch analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ionty MeSH
- kyslík MeSH
- oxid dusnatý MeSH
- oxid uhličitý MeSH
- reaktivní formy kyslíku MeSH
- těkavé organické sloučeniny MeSH
- voda MeSH
RATIONALE: The reactions of the reagent ions used for trace gas analysis in selected ion flow tube mass spectrometry (SIFT-MS), R+ , viz. H3 O+ , NO+ and O2 + , with the major gases in air and breath samples, M, viz. N2 , O2 , CO2 and H2 O, are investigated. These reactions are seen to form weakly-bound adduct ions, R+ M, by ternary association reactions that must not be mistaken for genuine volatile organic compound (VOC) analyte ions. METHODS: The ternary association rate coefficients mediated by helium (He) carrier gas atoms, k3a , have been determined for all combinations of R+ and M, which form R+ M adduct ions ranging in m/z from 47 (H3 O+ N2 ) to 76 (O2 +• CO2 ). This was achieved by adding variable amounts of M (up to 0.5 mbar pressure) into the He carrier gas (pressure of 1.33 mbar) in a SIFT-MS flow tube at 300 K. Parabolic curvature was observed on some of the semi-logarithmic decay curves that allowed the rate coefficients mediated by M molecules, k3b , to be estimated. RESULTS: Values of k3a were found to range from 1 × 10-31 cm6 s-1 to 5 × 10-29 cm6 s-1 , which form mass spectral R+ M "ghost peaks" of significant strength when analysing VOCs at parts-per-billion concentrations. It was seen that the R+ M adduct ions (except when M is H2 O) react with H2 O molecules by ligand switching forming the readily recognised monohydrates of the initial reagent cations R+ H2 O. Whilst this ligand switching diminishes the R+ M adduct ghost peaks, it does not eliminate them entirely. CONCLUSIONS: The significance of these adduct ions for trace gas analysis by SIFT-MS in the low m/z region is alluded to, and some examples are given of m/z spectral overlaps of the R+ M and R+ H2 O adduct cations with analyte cations of VOCs formed by analysis of complex media like exhaled breath, warning that ghost peaks will be enhanced using nitrogen carrier gas in SIFT-MS.
Zobrazit více v PubMed
Španěl P, Smith D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom Rev. 2011;30(2):236-267.
Smith D, Španěl P. Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst. 2011;136(10):2009-2032.
Smith D, Španěl P. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Rapid Commun Mass Spectrom. 1996;10(10):1183-1198.
Crilley LR, Kramer LJ, Ouyang B, et al. Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). Atmos Meas Tech. 2019;12(12):6449-6463.
Wagner RL, Farren NJ, Davison J, et al. Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases. Atmos Meas Tech. 2021;14(9):6083-6100.
Bruderer T, Gaisl T, Gaugg MT, et al. On-line analysis of exhaled breath. Chem Rev. 2019;119(19):10803-10828.
Španěl P, Smith D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clin Mass Spectrom. 2020;16:18-24.
Dryahina K, Sovová K, Nemec A, Španěl P. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia And the Burkholderia cepacia complex. J Breath Res. 2016;10(3):037102
Španěl P, Smith D. Advances in on-line absolute trace gas analysis by SIFT-MS. Curr Anal Chem. 2013;9(4):525-539.
Hera D, Langford VS, McEwan MJ, McKellar TI, Milligan DB. Negative reagent ions for real time detection using SIFT-MS. Environments. 2017;4(1):16
Smith D, McEwan MJ, Španěl P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube-mass spectrometry analyses. Anal Chem. 2020;92(19):12750-12762.
Ghislain M, Costarramone N, Sotiropoulos JM, et al. Direct analysis of aldehydes and carboxylic acids in the gas phase by negative ionization selected ion flow tube mass spectrometry: Quantification and modelling of ion-molecule reactions. Rapid Commun Mass Spectrom. 2019;33(21):1623-1634.
Španěl P, Smith D. Dissociation of H3O+, NO+ and O2+• reagent ions injected into nitrogen carrier gas in SIFT-MS and reactivity of the ion fragments. Int J Mass Spectrom. 2020;458:116438
Španěl P, Dryahina K, Smith D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int J Mass Spectrom. 2006;249:230-239.
Španěl P, Smith D. Influence of weakly bound adduct ions on breath trace gas analysis by selected ion flow tube mass spectrometry (SIFT-MS). Int J Mass Spectrom. 2009;280(1-3):128-135.
Sule-Suso J, Pysanenko A, Španěl P, Smith D. Quantification of acetaldehyde and carbon dioxide in the headspace of malignant and non-malignant lung cells in vitro by SIFT-MS. Analyst. 2009;134(12):2419-2425.
Smith D, Pysanenko A, Španěl P. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(10):1419-1425.
Lindinger W, Hansel A, Herman Z. Ion-molecule reactions. In: Bederson B, Walther H, eds. Advances in Atomic, Molecular, and Optical Physics. Vol. 43. San Diego: Elsevier Academic Press Inc; 2000:243-294.
Smith D, Pysanenko A, Španěl P. Ionic diffusion and mass discrimination effects in the new generation of short flow tube SIFT-MS instruments. Int J Mass Spectrom. 2009;281(1-2):15-23.
Adams NG, Smith D. Ion-molecule reactions at low temperatures. In: Fontijn A, Clyne MAA, eds. Reactions of Small Transient Species: Kinetics and Energetics. Academic Press; 1983:311-385.
Španěl P, Zabka J, Zymak I, Smith D. Selected ion flow tube study of the reactions of H3O+ and NO+ with a series of primary alcohols in the presence of water vapour in support of selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(5):437-446.
Smith D, Chippendale TWE, Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O+ and NO+ with a series of volatile aldehydes of biogenic significance. Rapid Commun Mass Spectrom. 2014;28(17):1917-1928.
Smith D, Adams NG, Grief D. Implications of some laboratory determinations of NO+ reaction-rates to cluster ion formation in D-region. J Atmos Terrestrial Phys. 1977;39(4):513-521.
Smith D, Chippendale TWE, Španěl P. Minimising the effects of isobaric product ions in SIFT-MS quantification of acetaldehyde, dimethyl sulphide and carbon dioxide. Curr Anal Chem. 2013;9(4):550-557.
Bohringer H, Arnold F, Smith D, Adams NG. A study of the temperature dependences of the N2+ + N2 → N4+ and O2+ + O2 → O4+ association reactions using the selected-ion flow-tube and drift-tube techniques. Int J Mass Spectrom Ion Processes. 1983;52(1):25-41.
Howard CJ, Bierbaum VM, Rundle HW, Kaufman F. Kinetics and mechanism of formation of water cluster ions from O2+ and H2O. J Chem Phys. 1972;57(8):3491-3499.
Adams NG, Bohme DK, Dunkin DB, Fehsenfeld FC, Ferguson EE. Flowing afterglow studies of formation and reactions of cluster ions of O2+, O2−, and O−. J Chem Phys. 1970;52(6):3133-3140.
Pysanenko A, Španěl P, Smith D. A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. J Breath Res. 2008;2(4):046004
Španěl P, Smith D. Selected ion flow tube studies of the reactions of H3O+, NO+ and O2+ with some organosulphur molecules. Int J Mass Spectrom. 1998;176(3):167-176.
Smith D, Adams NG, Miller TM. Laboratory study of reactions of N+, N2+, N3+, N4+, O+, O2+, and NO+ ions with several molecules at 300K. J Chem Phys. 1978;69(1):308-318.
The National Institute of Standards and Technology (NIST) Chemistry WebBook, SRD 69. 2017; Available: http://webbook.nist.gov/
Smith D, Wang TS, Španěl P. Analysis of ketones by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(23):2655-2660.
Prince BJ, Milligan DB, McEwan MJ. Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun Mass Spectrom. 2010;24(12):1763-1769.
Francis GJ, Langford VS, Milligan DB, McEwan MJ. Real-time monitoring of hazardous air pollutants. Anal Chem. 2009;81(4):1595-1599.
Smith D, Spanel P, Dryahina K. H3O+, NO+ and O2+ reactions with saturated and unsaturated monoketones and diones; focus on hydration of product ions. Int J Mass Spectrom. 2019;435:173-180.
Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)