Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26070450
DOI
10.1007/s00572-015-0652-5
PII: 10.1007/s00572-015-0652-5
Knihovny.cz E-zdroje
- Klíčová slova
- Arbuscular mycorrhiza, Aromatic plants, Coriander, Dill, Essential oils, Growth responses,
- MeSH
- kopr vonný metabolismus mikrobiologie MeSH
- koriandr metabolismus mikrobiologie MeSH
- mykorhiza růst a vývoj MeSH
- oleje prchavé metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oleje prchavé MeSH
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.
Zobrazit více v PubMed
Oecologia. 2009 Jul;160(4):807-16 PubMed
Mycorrhiza. 2007 Oct;17(7):581-7 PubMed
Mycorrhiza. 2011 Aug;21(6):523-35 PubMed
New Phytol. 2006;172(2):347-57 PubMed
J Sci Food Agric. 2012 Jan 30;92 (2):203-6 PubMed
Mycorrhiza. 2006 Sep;16(6):443-6 PubMed
Appl Environ Microbiol. 2013 Oct;79(20):6507-15 PubMed
Molecules. 2012 Apr 02;17(4):3989-4006 PubMed
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16944-9 PubMed
Am J Bot. 2014 Jan;101(1):26-33 PubMed
Bioresour Technol. 2004 Jul;93(3):307-11 PubMed
New Phytol. 2011 Jan;189(1):176-89 PubMed
Bioresour Technol. 2002 Jan;81(1):77-9 PubMed
Plant Biol (Stuttg). 2008 Jan;10(1):108-22 PubMed
Proc Biol Sci. 2009 Dec 7;276(1676):4237-45 PubMed
Vitam Horm. 2005;72:505-35 PubMed
Mycorrhiza. 2007 Jun;17(4):291-7 PubMed
Electrophoresis. 2014 Jun;35(11):1535-46 PubMed
Mycorrhiza. 2006 Oct;16(7):485-94 PubMed
Mycorrhiza. 2012 Feb;22(2):149-56 PubMed
Expert Rev Anti Infect Ther. 2012 Jul;10(7):775-90 PubMed
Mycorrhiza. 2007 Jun;17(4):349-53 PubMed
Mycorrhiza. 2015 Jul;25(5):345-57 PubMed
Food Chem Toxicol. 2008 Feb;46(2):446-75 PubMed
Annu Rev Entomol. 2012;57:405-24 PubMed
Mycorrhiza. 2013 May;23(4):253-65 PubMed
J Sci Food Agric. 2010 Mar 15;90(4):696-702 PubMed
Plant Physiol. 2008 Nov;148(3):1453-64 PubMed