Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28106141
PubMed Central
PMC5247675
DOI
10.1038/srep41134
PII: srep41134
Knihovny.cz E-zdroje
- MeSH
- acetáty metabolismus MeSH
- cyklopentany metabolismus MeSH
- fyziologická adaptace MeSH
- Glomeromycota metabolismus fyziologie MeSH
- kalmodulin metabolismus MeSH
- kořeny rostlin růst a vývoj mikrobiologie MeSH
- kyseliny indoloctové metabolismus MeSH
- mykorhiza růst a vývoj MeSH
- období sucha MeSH
- oxid dusnatý metabolismus MeSH
- oxylipiny metabolismus MeSH
- Poncirus růst a vývoj mikrobiologie MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetáty MeSH
- cyklopentany MeSH
- indoleacetic acid MeSH Prohlížeč
- kalmodulin MeSH
- kyseliny indoloctové MeSH
- methyl jasmonate MeSH Prohlížeč
- oxid dusnatý MeSH
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
Plant roots are the first parts of plants to face drought stress (DS), and thus root modification is important for plants to adapt to drought. We hypothesized that the roots of arbuscular mycorrhizal (AM) plants exhibit better adaptation in terms of morphology and phytohormones under DS. Trifoliate orange seedlings inoculated with Diversispora versiformis were subjected to well-watered (WW) and DS conditions for 6 weeks. AM seedlings exhibited better growth performance and significantly greater number of 1st, 2nd, and 3rd order lateral roots, root length, area, average diameter, volume, tips, forks, and crossings than non-AM seedlings under both WW and DS conditions. AM fungal inoculation considerably increased root hair density under both WW and DS and root hair length under DS, while dramatically decreased root hair length under WW but there was no change in root hair diameter. AM plants had greater concentrations of indole-3-acetic acid, methyl jasmonate, nitric oxide, and calmodulin in roots, which were significantly correlated with changes in root morphology. These results support the hypothesis that AM plants show superior adaptation in root morphology under DS that is potentially associated with indole-3-acetic acid, methyl jasmonate, nitric oxide, and calmodulin levels.
College of Horticulture and Gardening Yangtze University Jingzhou Hubei 434025 China
Institute of Citrus Research Zhejiang Academy of Agricultural Sciences Taizhou Zhejiang 318026 China
Institute of Root Biology Yangtze University Jingzhou Hubei 434025 China
Zobrazit více v PubMed
Kunert K. et al.. Drought stress responses in soybean roots and nodules. Front. Plant Sci. 7, 1015 (2016). PubMed PMC
Xiong L. M., Wang R. G., Mao G. H. & Koczan J. M. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol. 142, 1065–1074 (2006). PubMed PMC
Wang H., Siopongco J., Wade L. J. & Yamauchi A. Fractal analysis on root systems of rice plants in response to drought stress. Environ. Exp. Bot. 65, 338–344 (2009).
Schnall J. A. & Quatrano R. S. Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol. 100, 216–218 (1992). PubMed PMC
Smith S. E. & Read D. J. Mycorrhizal symbiosis (Academic Press, San Diego, 2008).
Wu Q. S., Srivastava A. K. & Zou Y. N. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 164, 77–87 (2013).
He F., Zhang H. Q. & Tang M. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza 26, 311–323 (2016). PubMed
Ruiz-Lozano J. M. et al.. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 39, 441–452 (2016). PubMed
Allen M. F. Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone J. 6, 291–297 (2007).
Zou Y. N., Srivastava A. K., Ni Q. D. & Wu Q. S. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front. Microbiol. 6, 203 (2015). PubMed PMC
Nelsen C. E. & Safir G. R. Increased drought tolerence of mycorrhizal onion plants caused by improved phosphorous nutrition. Planta 154, 407–413 (1982). PubMed
Wu Q. S. & Xia R. X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163, 417–425 (2006). PubMed
Wu Q. S., Xia R. X. & Zou Y. N. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol. 163, 1101–1110 (2006). PubMed
Tuo X. Q., Li S., Wu Q. S. & Zou Y. N. Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism. Sci. Hortic. 197, 130–134 (2015).
Zou Y. N., Huang Y. M., Wu Q. S. & He X. H. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25, 143–152 (2015). PubMed
Huang Y. M. et al.. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front. Microbiol. 5, 682 (2014). PubMed PMC
Zou Y. N., Srivastava A. K., Wu Q. S. & Huang Y. M. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Arch. Agron. Soil Sci. 60, 1103–1114 (2014).
Porcel R., Aroca R., Azcón R. & Ruiz-Lozano J. M. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol. Biol. 60, 389–404 (2006). PubMed
Li T. et al.. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 197, 617–630 (2013). PubMed
Fan Q. J. & Liu J. H. Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol. Plant. 33, 1533–1542 (2011).
Porcel R., Azcón R. & Ruiz-Lozano J. M. Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol. Mol. Plant Path. 65, 211–221 (2004).
Porcel R., Azcón R. & Ruiz-Lozano J. M. Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J. Exp. Bot. 56, 1933–1942 (2005). PubMed
Chitarra W. et al.. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. doi: 10.1104/pp.16.00307 (2016). PubMed DOI PMC
Li T. et al.. Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Mycorrhiza 26, 879–893 (2016). PubMed
Hodge A., Berta G., Doussan C., Merchan F. & Crespi M. Plant root growth, architecture and function. Plant Soil 321, 153–187 (2009).
Berta G., Fusconi A., Trotta A. & Scannerini S. Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol. 114, 207–215 (1990).
Oláh B., Brière C., Bécard G., Dénarié J. & Gough C. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J. 44, 195–207 (2005). PubMed
Wu Q. S. et al.. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul. 68, 27–35 (2012).
Atkinson D. et al.. The influence of arbuscular mycorrhizal colonisation and environment on root development in soil. Eur. J. Soil Sci. 54, 751–757 (2003).
Herdlera S., Kreuzera K., Scheua S. & Bonkowski M. Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol. Biochem. 40, 660–668 (2008).
Wu Q. S. et al.. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 26, 237–247 (2016). PubMed
Schroeder M. S. & Janos D. P. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza 15, 203–216 (2005). PubMed
Wu Q. S., Li G. H. & Zou Y. N. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Not. Bot. Horti. Agrobo. 39, 232–236 (2011).
Gutjahr C., Casieri L. & Paszkowski U. Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol. 182, 829–837 (2009). PubMed
Wittenmayer L. & Merbach W. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J. Plant Nutri. Soil Sci. 168, 531–540 (2005).
Diego N. D. et al.. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. J. Plant Physiol. 188, 64–71 (2015). PubMed
Pozo M. J., López-Ráez J. A., Azcón-Aguilar C. & García-Garrido J. M. Phytohormones as integrators of en vironmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205, 1431–1436 (2015). PubMed
Sánchez-Romera B., Ruiz-Lozano J. M., Zamarreño A. M., García-Mina J. M. & Aroca R. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26, 111–122 (2016). PubMed
Tisserant B., Gianinazzi S. & Gianinazzi-Pearson V. Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can. J. Bot. 74, 1947–1955 (1996).
Felten J. et al.. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in Poplar and Arabidopsis through auxin transport and signaling. Plant Physiol. 151, 1991–2005 (2009). PubMed PMC
Chu G., Chen T. T., Wang Z. Q., Yang J. C. & Zhang J. H. Reprint of “Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice”. Field Crops Res. 165, 36–48 (2014).
Wu Q. S., Cao M. Q., Zou Y. N., Wu C. & He X. H. Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Sci. Hortic. 199, 95–102 (2016).
Li T. et al.. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza 24, 595–602 (2014). PubMed
Sun X. G. & Tang M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. South Afr. J. Bot. 88, 373–379 (2013).
Floss D. S., Levy J. G., Lévesque-Tremblay V., Pumplin N. & Harrison M. J. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. 110, E5025–E5034 (2013). PubMed PMC
Foo E., Ross J. J., Jones W. T. & Reid J. B. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111, 769–779 (2013). PubMed PMC
Ludwig-Müller J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. Arbuscular mycorrhizas: Physiology and Function [ Koltai H. & Kapulnik Y. (eds)] [169–196] (Springer, New York, 2010).
Bhalerao R. P. et al.. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29, 325–332 (2002). PubMed
Kurepin L. V., Park J. M., Lazarovits G. & Bernards M. A. Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul. 75, 199–207 (2015).
Jung H., Lee D. K., Choi Y. D. & Kim J. K. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci. 236, 304–312 (2015). PubMed
Corpas F. J. & Barroso J. B. Functions of nitric oxide (NO) in roots during development and under adverse stress conditions. Plants 4, 240–252 (2015). PubMed PMC
Lombardo M. C., Graziano M., Polacco J. C. & Lamattina L. Nitric oxide functions as a positive regulator of root hair development. Plant Signal. Behav. 1, 22–33 (2006). PubMed PMC
Calcagno C., Novero M., Genre A., Bonfante P. & Lanfranco L. The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza 22, 259–269 (2012). PubMed
Espinosa F., Garrido I., Ortega A., Casimiro I. & Álvarez-Tinaut M. C. Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus. PLoS ONE 9, e100132 (2014). PubMed PMC
Liu W. et al.. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol. 168, 343–356 (2015). PubMed PMC
Cheong J. J. & Choi Y. D. Methyl jasmonate as a vital substance in plants. Trends Gene. 19, 409–413 (2003). PubMed
Hause B., Maier W., Miersch O., Kramell R. & Strack D. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130, 1213–1220 (2002). PubMed PMC
Meixner C. et al.. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222, 709–715 (2005). PubMed
Anjum S. A., Wang L., Farooq M., Khan I. & Xue L. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J. Agron. Crop Sci. 197, 296–301 (2011).
Lorella N. et al.. The arbuscular mycorrhizal fungus Glomus intraradices induces intracellular calcium changes in soybean cells. Caryologia 60, 137–140 (2007).
Lévy J. et al.. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364 (2004). PubMed
Virdi A. S., Singh S. & Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front. Plant Sci. 6, 809 (2015). PubMed PMC
Trewavas A. J. & Malhó R. Ca2+ signalling in plant cells: the big network. Curr. Opin. Plant Biol. 1, 428–433 (1998). PubMed
Foreman J. et al.. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446 (2003). PubMed
Phillips J. M. & Hayman D. S. Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161 (1970).