Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria

. 2019 ; 10 () : 277. [epub] 20190222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30853950

While photosynthetic processes have become increasingly understood in cyanobacterial model strains, differences in the spatial distribution of thylakoid membranes among various lineages have been largely unexplored. Cyanobacterial cells exhibit an intriguing diversity in thylakoid arrangements, ranging from simple parietal to radial, coiled, parallel, and special types. Although metabolic background of their variability remains unknown, it has been suggested that thylakoid patterns are stable in certain phylogenetic clades. For decades, thylakoid arrangements have been used in cyanobacterial classification as one of the crucial characters for definition of taxa. The last comprehensive study addressing their evolutionary history in cyanobacteria was published 15 years ago. Since then both DNA sequence and electron microscopy data have grown rapidly. In the current study, we map ultrastructural data of >200 strains onto the SSU rRNA gene tree, and the resulting phylogeny is compared to a phylogenomic tree. Changes in thylakoid architecture in general follow the phylogeny of housekeeping loci. Parietal arrangement is resolved as the original thylakoid organization, evolving into complex arrangement in the most derived group of heterocytous cyanobacteria. Cyanobacteria occupying intermediate phylogenetic positions (greater filamentous, coccoid, and baeocytous types) exhibit fascicular, radial, and parallel arrangements, partly tracing the reconstructed course of phylogenetic branching. Contrary to previous studies, taxonomic value of thylakoid morphology seems very limited. Only special cases such as thylakoid absence or the parallel arrangement could be used as taxonomically informative apomorphies. The phylogenetic trees provide evidence of both paraphyly and reversion from more derived architectures in the simple parietal thylakoid pattern. Repeated convergent evolution is suggested for the radial and fascicular architectures. Moreover, thylakoid arrangement is constrained by cell size, excluding the occurrence of complex architectures in cyanobacteria smaller than 2 μm in width. It may further be dependent on unknown (eco)physiological factors as suggested by recurrence of the radial type in unrelated but morphologically similar cyanobacteria, and occurrence of special features throughout the phylogeny. No straightforward phylogenetic congruences have been found between proteins involved in photosynthesis and thylakoid formation, and the thylakoid patterns. Remarkably, several postulated thylakoid biogenesis factors are partly or completely missing in cyanobacteria, challenging their proposed essential roles.

Zobrazit více v PubMed

Alvarenga D. O., Andreote A. P. D., Branco L. H. Z., Fiore M. F. (2017). PubMed DOI

Alvarenga D. O., Rigonato J., Branco L. H. Z., Melo I. S., Fiore M. F. (2016). PubMed DOI

Armbruster U., Labs M., Pribil M., Viola S., Xu W., Scharfenberg M., et al. (2013). PubMed DOI PMC

Barthel S., Bernát G., Seidel T., Rupprecht E., Kahmann U., Schneider D. (2013). Thylakoid membrane maturation and PSII activation are linked in greening PubMed DOI PMC

Bohunická M., Mareš J., Hrouzek P., Urajová P., Lukeš M., Šmarda J., et al. (2015a). A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (oscillatoriales) reveals a new cylindrospermopsin-producing clade of cyanobacteria. PubMed DOI

Bohunická M., Pietrasiak N., Johansen J. R., Berrendero-Gómez E., Hauer T., Gaysina L. A., et al. (2015b). DOI

Boudiére L., Michaud M., Petroutsos D., Rebeille F., Falconet D., Bastien O., et al. (2014). Glycerolipids in photosynthesis: composition, synthesis and trafficking. PubMed DOI

Brito A., Ramos V., Seabra R., Santos A., Santos C. L., Lopo M., et al. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: a polyphasic study. PubMed DOI

Bruno L., Billi D., Bellezza S., Albertano P. (2009). Cytomorphological and genetic characterization of troglobitic PubMed DOI PMC

Bryan S. J., Burroughs N. J., Evered C., Sacharz J., Nenninger A., Mullineaux C. W., et al. (2011). Loss of the SPHF homologue Slr1768 leads to a catastrophic failure in the maintenance of thylakoid membranes in PubMed DOI PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST plus: architecture and applications. PubMed DOI PMC

Casamatta D., Stanic D., Gantar M., Richardson L. L. (2012). Characterization of DOI

Castenholz R. (2001). “General characteristics of cyanobacteria,” in

Castenholz R. W., Norris T. B. (2005). Revisionary concepts of species in the Cyanobacteria and their applications. DOI

Cellamare M., Duval C., Drelin Y., Djediat C., Touibi N., Agogue H., et al. (2018). Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). PubMed DOI

Chatchawan T., Komárek J., Strunecký O., Šmarda J., Peerapornpisal Y. (2012). DOI

Chigri F., Fuchs M., Otters S., Vothknecht U. C. (2012). Thylakoid membrane formation: Vipp1 and more.

Choi D. H., Noh J. H., Lee C. M., Rho S. (2008). PubMed DOI

Cohen-Bazire G. S. (1988). Fine-structure of cyanobacteria. DOI

Dadheech P. K., Mahmoud H., Kotut K., Krienitz L. (2014). DOI

Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. PubMed DOI PMC

Dell Inc. (2016).

Demé B., Cataye C., Block M. A., Marechal E., Jouhet J. (2014). Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. PubMed DOI

Dvořák P., Casamatta D. A., Poulíčková A., Hašler P., Ondřej V., Sanges R. (2014). Synechococcus: 3 billion years of global dominance. PubMed DOI

Dvořák P., Poulíčková A., Hašler P., Belli M., Casamatta D. A., Papini A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. DOI

Engene N., Rottacker E. C., Kaštovský J., Byrum T., Choi H., Ellisman M. H., et al. (2012). PubMed DOI PMC

Fiore M. F., Sant’Anna C. L., Azevedo M. T. D., Komárek J., Kaštovský J., Sulek J., et al. (2007). The cyanobacterial genus DOI

Flombaum P., Gallegos L. L., Gordillo R. A., Rincon J., Zabala L. L., Jiao N., et al. (2013). Present and future global distributions of the marine Cyanobacteria PubMed DOI PMC

Flores E., Herrero A. (2010). Compartmentalized function through cell differentiation in filamentous cyanobacteria. PubMed DOI

Gantt E., Conti S. F. (1969). Ultrastructure of blue-green algae. PubMed PMC

Gonzalez-Esquer C. R., Šmarda J., Rippka R., Axen S. D., Guglielmi G., Gugger M., et al. (2016). Cyanobacterial ultrastructure in light of genomic sequence data. PubMed DOI

Gugger M. F., Hoffmann L. (2004). Polyphyly of true branching cyanobacteria (Stigonematales). PubMed DOI

Guglielmi G., Cohen-Bazire G. (1984). Etude taxonomique d’un genre de cyanobacterie Oscillatoriacee: le genre Pseudanabaena Lauterborn. II. Analyse de la composition moleculaire et de la structure des phycobilisomes.

Guglielmi G., Cohen-Bazire G., Bryant D. A. (1981). The structure of DOI

Harris L. K., Theriot J. A. (2016). Relative rates of surface and volume synthesis set bacterial cell size. PubMed DOI PMC

Hašler P., Casamatta D., Dvořák P., Poulíčková A. (2017). DOI

Heinz S., Rast A., Shao L., Gutu A., Guegel I. L., Heyno E., et al. (2016). Thylakoid membrane architecture in PubMed DOI PMC

Herbstová M., Tietz S., Kinzel C., Turkina M. V., Kirchhoff H. (2012). Architectural switch in plant photosynthetic membranes induced by light stress. PubMed DOI PMC

Hoffmann L. (1988). Criteria for the classification of blue-green algae (cyanobacteria) at the genus and at the species levels.

Hoffmann L., Kaštovský J., Komárek J. (2005). System of cyanoprokaryotes (cyanobacteria) – state in 2004. DOI

Järvi S., Gollan P. J., Aro E.-M. (2013). Understanding the roles of the thylakoid lumen in photosynthesis regulation. PubMed DOI PMC

Jehl P., Sievers F., Higgins D. G. (2015). OD-seq: outlier detection in multiple sequence alignments. PubMed DOI PMC

Johansen J. R., Casamatta D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. DOI

Kaštovský J., Johansen J. R. (2008). DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC

Keeling P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. PubMed DOI

Kirchhoff H. (2013). Architectural switches in plant thylakoid membranes. PubMed DOI

Kirchhoff H., Mukherjee U., Galla H. J. (2002). Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. PubMed DOI

Klotz A., Georg J., Bučinská L., Watanabe S., Reimann V., Januszewski W., et al. (2016). Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. PubMed DOI

Komárek J. (2018). Several problems of the polyphasic approach in the modern cyanobacterial system. DOI

Komárek J., Čáslavská J. (1991). Thylakoidal patterns in oscillatorialean genera.

Komárek J., Cepák V. (1998). Cytomorphological characters supporting the taxonomic validity of DOI

Komárek J., Cepák V., Kaštovský J., Sulek J. (2004). What are the cyanobacterial genera DOI

Komárek J., Kaštovský J. (2003). Coincidences of structural and molecular characters in evolutionary lines of cyanobacteria. DOI

Komárek J., Kaštovský J., Mareš J., Johansen J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach.

Komárek J., Kaśtovský J., Ventura S., Turicchia S., Šmarda J. (2009). The cyanobacterial genus Phormidesmis. DOI

Komárek J., Zapomělová E., Šmarda J., Kopecký J., Rejmánková E., Woodhouse J., et al. (2013). Polyphasic evaluation of DOI

Komenda J., Sobotka R., Nixon P. J. (2012). Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. PubMed DOI

Korelusová J., Kaštovský J., Komárek J. (2009). Heterogeneity of the cyanobacterial genus PubMed DOI

Kowalewska L., Mazur R., Suski S., Garstka M., Mostowska A. (2016). Three-dimensional visualization of the tubular-lamellar transformation of the internal plastid membrane network during Runner Bean chloroplast biogenesis. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. PubMed DOI PMC

Kunkel D. D. (1982). Thylakoid centers - structures associated with the cyanobacterial photosynthetic membrane system. DOI

Kwon K. C., Cho M. H. (2008). Deletion of the chloroplast-localized AtTerC gene product in PubMed DOI

Lamprinou V., Hernández-Mariné M., Pachiadaki M. G., Kormas K. A., Economou-Amilli A., Pantazidou A. (2013). New findings on the true-branched monotypic genus DOI

Lamprinou V., Skaraki K., Kotoulas G., Economou-Amilli A., Pantazidou A. (2012). PubMed DOI

Lang N. J. (1968). Fine structure of blue-green algae. PubMed DOI

Liberton M., Austin J. R., II, Berg R. H., Pakrasi H. B. (2011a). Insights into the complex 3-D architecture of thylakoid membranes in unicellular cyanobacterium PubMed PMC

Liberton M., Austin J. R., II, Berg R. H., Pakrasi H. B. (2011b). Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. PubMed DOI PMC

Liberton M., Berg R. H., Heuser J., Roth R., Pakrasi H. B. (2006). Ultrastructure of the membrane systems in the unicellular cyanobacterium PubMed DOI

Lokmer A. (2007).

Maddison W. P., Maddison D. R. (2018).

Mareš J. (2018). Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. DOI

Mareš J., Hrouzek P., Kaňa R., Ventura S., Strunecký O., Komárek J. (2013). The primitive thylakoid-less cyanobacterium PubMed DOI PMC

Mareš J., Lara Y., Dadáková I., Hauer T., Uher B., Wilmotte A., et al. (2015). Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths ( PubMed DOI

Mareš J., Strunecký O., Bučinská L., Wiedermannová J. (2018). Data from: Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria. PubMed PMC

Martins M. D., Rigonato J., Taboga S. R., Branco L. H. Z. (2016). Proposal of PubMed DOI

Miller M. A., Pfeiffer W., Schwartz T. (2012). “The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources,” in DOI

Montgomery B. L. (2015). Light-dependent governance of cell shape dimensions in cyanobacteria. PubMed DOI PMC

Mühlsteinová R., Johansen J. R., Pietrasiak N., Martin M. P. (2014a). Polyphasic characterization of DOI

Mühlsteinová R., Johansen J. R., Pietrasiak N., Martin M. P., Osorio-Santos K., Warren S. D. (2014b). Polyphasic characterization of DOI

Mullineaux C. W. (2014). Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. PubMed DOI

Mustardy L., Garab G. (2003). Granum revisited. A three -dimensional model - where things fall into place. PubMed DOI

Nguyen L. T. T., Cronberg G., Moestrup O., Daugbjerg N. (2013). DOI

Nickelsen J., Rengstl B., Stengel A., Schottkowski M., Soll J., Ankele E. (2011). Biogenesis of the cyanobacterial thylakoid membrane system - an update. PubMed DOI

Nickelsen J., Zerges W. (2013). Thylakoid biogenesis has joined the new era of bacterial cell biology. PubMed DOI PMC

Nierzwicki-Bauer S. A., Balkwill D. L., Stevens S. E., Jr. (1983). Three-dimensional ultrastructure of a unicellular cyanobacterium. PubMed DOI PMC

Novis P. M., Visnovsky G. (2011). Novel alpine algae from New Zealand: cyanobacteria. DOI

Palinska K. A., Krumbein W. E., Schlemminger U. (1998). Ultramorphological studies on Spirulina DOI

Peduzzi P., Gruber M., Schagerl M. (2014). The virus’s tooth: cyanophages affect an African flamingo population in a bottom-up cascade. PubMed DOI PMC

Pils B., Copley R. R., Schultz J. (2005). Variation in structural location and amino acid conservation of functional sites in protein domain families. PubMed DOI PMC

Porta D., Hernández-Mariné M., Herdman M., Rippka R. (2003). Structural and ultrastructural characterization of DOI

Pribil M., Labs M., Leister D. (2014). Structure and dynamics of thylakoids in land plants. PubMed DOI

Price M. N., Dehal P. S., Arkin A. P. (2010). Fast tree 2-approximately maximum-likelihood trees for large alignments. PubMed DOI PMC

Ramirez M., Hernández-Mariné M., Mateo P., Berrendero E., Roldán M. (2011). Polyphasic approach and adaptative strategies of DOI

Rasoulouniriana D., Siboni N., Ben-Dov E., Kramarsky-Winter E., Loya Y., Kushmaro A. (2009). PubMed DOI

Rast A., Heinz S., Nickelsen J. (2015). Biogenesis of thylakoid membranes. PubMed DOI

Reynolds E. S. (1963). Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. PubMed DOI PMC

Ridley C. P., Faulkner D. J., Haygood M. G. (2005). Investigation of PubMed DOI PMC

Rigonato J., Gama W. A., Alvarenga D. O., Branco L. H. Z., Brandini F. P., Genuário D. B., et al. (2016). PubMed DOI

Rippka R., Cohen-Bazire G. (1983). The cyanobacteriales - a legitimate order based on the type strain PubMed DOI

Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. DOI

Rippka R., Waterbury J., Cohen-Bazire G. (1974). Cyanobacterium which lacks thylakoids. DOI

Ris H., Singh R. N. (1961). Electron microscope studies on blue-green algae. PubMed DOI PMC

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Hohna S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. PubMed DOI PMC

Schirrmeister B. E., Antonelli A., Bagheri B. C. (2011). The origin of multicellularity in cyanobacteria. PubMed DOI PMC

Schirrmeister B. E., Gugger M., Donoghue P. C. J. (2015). Cyanobacteria and the great oxidation event: evidence from genes and fossils. PubMed DOI PMC

Schirrmeister B. E., Sanchez-Baracaldo P., Wacey D. (2016). Cyanobacterial evolution during the Precambrian. DOI

Sela I., Ashkenazy H., Katoh K., Pupko T. (2015). GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. PubMed DOI PMC

Shalygin S., Shalygina R., Johansen J. R., Pietrasiak N., Berrendero-Gómez E., Bohunická M., et al. (2017). PubMed DOI

Shimoni E., Rav-Hon O., Ohad I., Brumfeld V., Reich Z. (2005). Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. PubMed DOI PMC

Sinetova M. A., Bolatkhan K., Sidorov R. A., Mironov K. S., Skrypnik A. N., Kupriyanova E. V., et al. (2017). Polyphasic characterization of the thermotolerant cyanobacterium PubMed DOI

Spurr A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. PubMed DOI

Standfuss J., Van Scheltinga A. C. T., Lamborghini M., Kuehlbrandt W. (2005). Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. PubMed DOI PMC

Strunecký O., Bohunická M., Johansen J. R., Ćapková K., Raabová L., Dvořák P., et al. (2017). A revision of the genus DOI

Strunecký O., Elster J., Komárek J. (2011). Taxonomic revision of the freshwater cyanobacterium ” DOI

Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J. (2013). Molecular and morphological criteria for revision of the genus PubMed DOI

Strunecký O., Komárek J., Šmarda J. (2014).

Sundberg E., Slagter J. G., Fridborg I., Cleary S. P., Robinson C., Coupland G. (1997). ALBINO3, an PubMed DOI PMC

Taton A., Wilmotte A., Śmarda J., Elster J., Komárek J. (2011). DOI

Theis J., Schroda M. (2016). Revisiting the photosystem II repair cycle. PubMed DOI PMC

Ting C. S., Hsieh C., Sundararaman S., Mannella C., Marko M. (2007). Cryo-electron tomography reveals the comparative three-dimensional architecture of PubMed DOI PMC

van de Meene A. M. L., Hohmann-Marriott M. F., Vermaas W. F. J., Roberson R. W. (2006). The three-dimensional structure of the cyanobacterium PubMed DOI

van Eykelenburg C. (1979). The ultrastructure of PubMed DOI

Whitton B. A. (1972). “Fine structure and taxonomy on the blue-green algae,” in

Wilde S. B., Johansen J. R., Wilde H. D., Jiang P., Bartelme B. A., Haynie R. S. (2014). DOI

Yokoyama R., Yamamoto H., Kondo M., Takeda S., Ifuku K., Fukao Y., et al. (2016). Grana-localized proteins, RIQ1 and RIQ2, affect the organization of light-harvesting Complex II and grana stacking in PubMed DOI PMC

Yoon H. S., Hackett J. D., Ciniglia C., Pinto G., Bhattacharya D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. PubMed DOI

Zhang S., Shen G., Li Z., Golbeck J. H., Bryant D. A. (2014). Vipp1 is essential for the biogenesis of photosystem I but not thylakoid membranes in PubMed DOI PMC

Zimba P. V., Huang I. S., Foley J. E., Linton E. W. (2017). Identification of a new-to-science cyanobacterium, PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...