Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30853950
PubMed Central
PMC6395441
DOI
10.3389/fmicb.2019.00277
Knihovny.cz E-zdroje
- Klíčová slova
- SSU rRNA gene, cyanobacteria, evolution, photosynthesis, phylogenomics, taxonomy, thylakoid pattern,
- Publikační typ
- časopisecké články MeSH
While photosynthetic processes have become increasingly understood in cyanobacterial model strains, differences in the spatial distribution of thylakoid membranes among various lineages have been largely unexplored. Cyanobacterial cells exhibit an intriguing diversity in thylakoid arrangements, ranging from simple parietal to radial, coiled, parallel, and special types. Although metabolic background of their variability remains unknown, it has been suggested that thylakoid patterns are stable in certain phylogenetic clades. For decades, thylakoid arrangements have been used in cyanobacterial classification as one of the crucial characters for definition of taxa. The last comprehensive study addressing their evolutionary history in cyanobacteria was published 15 years ago. Since then both DNA sequence and electron microscopy data have grown rapidly. In the current study, we map ultrastructural data of >200 strains onto the SSU rRNA gene tree, and the resulting phylogeny is compared to a phylogenomic tree. Changes in thylakoid architecture in general follow the phylogeny of housekeeping loci. Parietal arrangement is resolved as the original thylakoid organization, evolving into complex arrangement in the most derived group of heterocytous cyanobacteria. Cyanobacteria occupying intermediate phylogenetic positions (greater filamentous, coccoid, and baeocytous types) exhibit fascicular, radial, and parallel arrangements, partly tracing the reconstructed course of phylogenetic branching. Contrary to previous studies, taxonomic value of thylakoid morphology seems very limited. Only special cases such as thylakoid absence or the parallel arrangement could be used as taxonomically informative apomorphies. The phylogenetic trees provide evidence of both paraphyly and reversion from more derived architectures in the simple parietal thylakoid pattern. Repeated convergent evolution is suggested for the radial and fascicular architectures. Moreover, thylakoid arrangement is constrained by cell size, excluding the occurrence of complex architectures in cyanobacteria smaller than 2 μm in width. It may further be dependent on unknown (eco)physiological factors as suggested by recurrence of the radial type in unrelated but morphologically similar cyanobacteria, and occurrence of special features throughout the phylogeny. No straightforward phylogenetic congruences have been found between proteins involved in photosynthesis and thylakoid formation, and the thylakoid patterns. Remarkably, several postulated thylakoid biogenesis factors are partly or completely missing in cyanobacteria, challenging their proposed essential roles.
Center Algatech Institute of Microbiology Czech Academy of Sciences Třeboň Czechia
Faculty of Science University of South Bohemia České Budějovice Czechia
Zobrazit více v PubMed
Alvarenga D. O., Andreote A. P. D., Branco L. H. Z., Fiore M. F. (2017). PubMed DOI
Alvarenga D. O., Rigonato J., Branco L. H. Z., Melo I. S., Fiore M. F. (2016). PubMed DOI
Armbruster U., Labs M., Pribil M., Viola S., Xu W., Scharfenberg M., et al. (2013). PubMed DOI PMC
Barthel S., Bernát G., Seidel T., Rupprecht E., Kahmann U., Schneider D. (2013). Thylakoid membrane maturation and PSII activation are linked in greening PubMed DOI PMC
Bohunická M., Mareš J., Hrouzek P., Urajová P., Lukeš M., Šmarda J., et al. (2015a). A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (oscillatoriales) reveals a new cylindrospermopsin-producing clade of cyanobacteria. PubMed DOI
Bohunická M., Pietrasiak N., Johansen J. R., Berrendero-Gómez E., Hauer T., Gaysina L. A., et al. (2015b). DOI
Boudiére L., Michaud M., Petroutsos D., Rebeille F., Falconet D., Bastien O., et al. (2014). Glycerolipids in photosynthesis: composition, synthesis and trafficking. PubMed DOI
Brito A., Ramos V., Seabra R., Santos A., Santos C. L., Lopo M., et al. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: a polyphasic study. PubMed DOI
Bruno L., Billi D., Bellezza S., Albertano P. (2009). Cytomorphological and genetic characterization of troglobitic PubMed DOI PMC
Bryan S. J., Burroughs N. J., Evered C., Sacharz J., Nenninger A., Mullineaux C. W., et al. (2011). Loss of the SPHF homologue Slr1768 leads to a catastrophic failure in the maintenance of thylakoid membranes in PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST plus: architecture and applications. PubMed DOI PMC
Casamatta D., Stanic D., Gantar M., Richardson L. L. (2012). Characterization of DOI
Castenholz R. (2001). “General characteristics of cyanobacteria,” in
Castenholz R. W., Norris T. B. (2005). Revisionary concepts of species in the Cyanobacteria and their applications. DOI
Cellamare M., Duval C., Drelin Y., Djediat C., Touibi N., Agogue H., et al. (2018). Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). PubMed DOI
Chatchawan T., Komárek J., Strunecký O., Šmarda J., Peerapornpisal Y. (2012). DOI
Chigri F., Fuchs M., Otters S., Vothknecht U. C. (2012). Thylakoid membrane formation: Vipp1 and more.
Choi D. H., Noh J. H., Lee C. M., Rho S. (2008). PubMed DOI
Cohen-Bazire G. S. (1988). Fine-structure of cyanobacteria. DOI
Dadheech P. K., Mahmoud H., Kotut K., Krienitz L. (2014). DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. PubMed DOI PMC
Dell Inc. (2016).
Demé B., Cataye C., Block M. A., Marechal E., Jouhet J. (2014). Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. PubMed DOI
Dvořák P., Casamatta D. A., Poulíčková A., Hašler P., Ondřej V., Sanges R. (2014). Synechococcus: 3 billion years of global dominance. PubMed DOI
Dvořák P., Poulíčková A., Hašler P., Belli M., Casamatta D. A., Papini A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. DOI
Engene N., Rottacker E. C., Kaštovský J., Byrum T., Choi H., Ellisman M. H., et al. (2012). PubMed DOI PMC
Fiore M. F., Sant’Anna C. L., Azevedo M. T. D., Komárek J., Kaštovský J., Sulek J., et al. (2007). The cyanobacterial genus DOI
Flombaum P., Gallegos L. L., Gordillo R. A., Rincon J., Zabala L. L., Jiao N., et al. (2013). Present and future global distributions of the marine Cyanobacteria PubMed DOI PMC
Flores E., Herrero A. (2010). Compartmentalized function through cell differentiation in filamentous cyanobacteria. PubMed DOI
Gantt E., Conti S. F. (1969). Ultrastructure of blue-green algae. PubMed PMC
Gonzalez-Esquer C. R., Šmarda J., Rippka R., Axen S. D., Guglielmi G., Gugger M., et al. (2016). Cyanobacterial ultrastructure in light of genomic sequence data. PubMed DOI
Gugger M. F., Hoffmann L. (2004). Polyphyly of true branching cyanobacteria (Stigonematales). PubMed DOI
Guglielmi G., Cohen-Bazire G. (1984). Etude taxonomique d’un genre de cyanobacterie Oscillatoriacee: le genre Pseudanabaena Lauterborn. II. Analyse de la composition moleculaire et de la structure des phycobilisomes.
Guglielmi G., Cohen-Bazire G., Bryant D. A. (1981). The structure of DOI
Harris L. K., Theriot J. A. (2016). Relative rates of surface and volume synthesis set bacterial cell size. PubMed DOI PMC
Hašler P., Casamatta D., Dvořák P., Poulíčková A. (2017). DOI
Heinz S., Rast A., Shao L., Gutu A., Guegel I. L., Heyno E., et al. (2016). Thylakoid membrane architecture in PubMed DOI PMC
Herbstová M., Tietz S., Kinzel C., Turkina M. V., Kirchhoff H. (2012). Architectural switch in plant photosynthetic membranes induced by light stress. PubMed DOI PMC
Hoffmann L. (1988). Criteria for the classification of blue-green algae (cyanobacteria) at the genus and at the species levels.
Hoffmann L., Kaštovský J., Komárek J. (2005). System of cyanoprokaryotes (cyanobacteria) – state in 2004. DOI
Järvi S., Gollan P. J., Aro E.-M. (2013). Understanding the roles of the thylakoid lumen in photosynthesis regulation. PubMed DOI PMC
Jehl P., Sievers F., Higgins D. G. (2015). OD-seq: outlier detection in multiple sequence alignments. PubMed DOI PMC
Johansen J. R., Casamatta D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. DOI
Kaštovský J., Johansen J. R. (2008). DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC
Keeling P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. PubMed DOI
Kirchhoff H. (2013). Architectural switches in plant thylakoid membranes. PubMed DOI
Kirchhoff H., Mukherjee U., Galla H. J. (2002). Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. PubMed DOI
Klotz A., Georg J., Bučinská L., Watanabe S., Reimann V., Januszewski W., et al. (2016). Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. PubMed DOI
Komárek J. (2018). Several problems of the polyphasic approach in the modern cyanobacterial system. DOI
Komárek J., Čáslavská J. (1991). Thylakoidal patterns in oscillatorialean genera.
Komárek J., Cepák V. (1998). Cytomorphological characters supporting the taxonomic validity of DOI
Komárek J., Cepák V., Kaštovský J., Sulek J. (2004). What are the cyanobacterial genera DOI
Komárek J., Kaštovský J. (2003). Coincidences of structural and molecular characters in evolutionary lines of cyanobacteria. DOI
Komárek J., Kaštovský J., Mareš J., Johansen J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach.
Komárek J., Kaśtovský J., Ventura S., Turicchia S., Šmarda J. (2009). The cyanobacterial genus Phormidesmis. DOI
Komárek J., Zapomělová E., Šmarda J., Kopecký J., Rejmánková E., Woodhouse J., et al. (2013). Polyphasic evaluation of DOI
Komenda J., Sobotka R., Nixon P. J. (2012). Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. PubMed DOI
Korelusová J., Kaštovský J., Komárek J. (2009). Heterogeneity of the cyanobacterial genus PubMed DOI
Kowalewska L., Mazur R., Suski S., Garstka M., Mostowska A. (2016). Three-dimensional visualization of the tubular-lamellar transformation of the internal plastid membrane network during Runner Bean chloroplast biogenesis. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. PubMed DOI PMC
Kunkel D. D. (1982). Thylakoid centers - structures associated with the cyanobacterial photosynthetic membrane system. DOI
Kwon K. C., Cho M. H. (2008). Deletion of the chloroplast-localized AtTerC gene product in PubMed DOI
Lamprinou V., Hernández-Mariné M., Pachiadaki M. G., Kormas K. A., Economou-Amilli A., Pantazidou A. (2013). New findings on the true-branched monotypic genus DOI
Lamprinou V., Skaraki K., Kotoulas G., Economou-Amilli A., Pantazidou A. (2012). PubMed DOI
Lang N. J. (1968). Fine structure of blue-green algae. PubMed DOI
Liberton M., Austin J. R., II, Berg R. H., Pakrasi H. B. (2011a). Insights into the complex 3-D architecture of thylakoid membranes in unicellular cyanobacterium PubMed PMC
Liberton M., Austin J. R., II, Berg R. H., Pakrasi H. B. (2011b). Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. PubMed DOI PMC
Liberton M., Berg R. H., Heuser J., Roth R., Pakrasi H. B. (2006). Ultrastructure of the membrane systems in the unicellular cyanobacterium PubMed DOI
Lokmer A. (2007).
Maddison W. P., Maddison D. R. (2018).
Mareš J. (2018). Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. DOI
Mareš J., Hrouzek P., Kaňa R., Ventura S., Strunecký O., Komárek J. (2013). The primitive thylakoid-less cyanobacterium PubMed DOI PMC
Mareš J., Lara Y., Dadáková I., Hauer T., Uher B., Wilmotte A., et al. (2015). Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths ( PubMed DOI
Mareš J., Strunecký O., Bučinská L., Wiedermannová J. (2018). Data from: Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria. PubMed PMC
Martins M. D., Rigonato J., Taboga S. R., Branco L. H. Z. (2016). Proposal of PubMed DOI
Miller M. A., Pfeiffer W., Schwartz T. (2012). “The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources,” in DOI
Montgomery B. L. (2015). Light-dependent governance of cell shape dimensions in cyanobacteria. PubMed DOI PMC
Mühlsteinová R., Johansen J. R., Pietrasiak N., Martin M. P. (2014a). Polyphasic characterization of DOI
Mühlsteinová R., Johansen J. R., Pietrasiak N., Martin M. P., Osorio-Santos K., Warren S. D. (2014b). Polyphasic characterization of DOI
Mullineaux C. W. (2014). Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. PubMed DOI
Mustardy L., Garab G. (2003). Granum revisited. A three -dimensional model - where things fall into place. PubMed DOI
Nguyen L. T. T., Cronberg G., Moestrup O., Daugbjerg N. (2013). DOI
Nickelsen J., Rengstl B., Stengel A., Schottkowski M., Soll J., Ankele E. (2011). Biogenesis of the cyanobacterial thylakoid membrane system - an update. PubMed DOI
Nickelsen J., Zerges W. (2013). Thylakoid biogenesis has joined the new era of bacterial cell biology. PubMed DOI PMC
Nierzwicki-Bauer S. A., Balkwill D. L., Stevens S. E., Jr. (1983). Three-dimensional ultrastructure of a unicellular cyanobacterium. PubMed DOI PMC
Novis P. M., Visnovsky G. (2011). Novel alpine algae from New Zealand: cyanobacteria. DOI
Palinska K. A., Krumbein W. E., Schlemminger U. (1998). Ultramorphological studies on Spirulina DOI
Peduzzi P., Gruber M., Schagerl M. (2014). The virus’s tooth: cyanophages affect an African flamingo population in a bottom-up cascade. PubMed DOI PMC
Pils B., Copley R. R., Schultz J. (2005). Variation in structural location and amino acid conservation of functional sites in protein domain families. PubMed DOI PMC
Porta D., Hernández-Mariné M., Herdman M., Rippka R. (2003). Structural and ultrastructural characterization of DOI
Pribil M., Labs M., Leister D. (2014). Structure and dynamics of thylakoids in land plants. PubMed DOI
Price M. N., Dehal P. S., Arkin A. P. (2010). Fast tree 2-approximately maximum-likelihood trees for large alignments. PubMed DOI PMC
Ramirez M., Hernández-Mariné M., Mateo P., Berrendero E., Roldán M. (2011). Polyphasic approach and adaptative strategies of DOI
Rasoulouniriana D., Siboni N., Ben-Dov E., Kramarsky-Winter E., Loya Y., Kushmaro A. (2009). PubMed DOI
Rast A., Heinz S., Nickelsen J. (2015). Biogenesis of thylakoid membranes. PubMed DOI
Reynolds E. S. (1963). Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. PubMed DOI PMC
Ridley C. P., Faulkner D. J., Haygood M. G. (2005). Investigation of PubMed DOI PMC
Rigonato J., Gama W. A., Alvarenga D. O., Branco L. H. Z., Brandini F. P., Genuário D. B., et al. (2016). PubMed DOI
Rippka R., Cohen-Bazire G. (1983). The cyanobacteriales - a legitimate order based on the type strain PubMed DOI
Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. DOI
Rippka R., Waterbury J., Cohen-Bazire G. (1974). Cyanobacterium which lacks thylakoids. DOI
Ris H., Singh R. N. (1961). Electron microscope studies on blue-green algae. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Hohna S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. PubMed DOI PMC
Schirrmeister B. E., Antonelli A., Bagheri B. C. (2011). The origin of multicellularity in cyanobacteria. PubMed DOI PMC
Schirrmeister B. E., Gugger M., Donoghue P. C. J. (2015). Cyanobacteria and the great oxidation event: evidence from genes and fossils. PubMed DOI PMC
Schirrmeister B. E., Sanchez-Baracaldo P., Wacey D. (2016). Cyanobacterial evolution during the Precambrian. DOI
Sela I., Ashkenazy H., Katoh K., Pupko T. (2015). GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. PubMed DOI PMC
Shalygin S., Shalygina R., Johansen J. R., Pietrasiak N., Berrendero-Gómez E., Bohunická M., et al. (2017). PubMed DOI
Shimoni E., Rav-Hon O., Ohad I., Brumfeld V., Reich Z. (2005). Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. PubMed DOI PMC
Sinetova M. A., Bolatkhan K., Sidorov R. A., Mironov K. S., Skrypnik A. N., Kupriyanova E. V., et al. (2017). Polyphasic characterization of the thermotolerant cyanobacterium PubMed DOI
Spurr A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. PubMed DOI
Standfuss J., Van Scheltinga A. C. T., Lamborghini M., Kuehlbrandt W. (2005). Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. PubMed DOI PMC
Strunecký O., Bohunická M., Johansen J. R., Ćapková K., Raabová L., Dvořák P., et al. (2017). A revision of the genus DOI
Strunecký O., Elster J., Komárek J. (2011). Taxonomic revision of the freshwater cyanobacterium ” DOI
Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J. (2013). Molecular and morphological criteria for revision of the genus PubMed DOI
Strunecký O., Komárek J., Šmarda J. (2014).
Sundberg E., Slagter J. G., Fridborg I., Cleary S. P., Robinson C., Coupland G. (1997). ALBINO3, an PubMed DOI PMC
Taton A., Wilmotte A., Śmarda J., Elster J., Komárek J. (2011). DOI
Theis J., Schroda M. (2016). Revisiting the photosystem II repair cycle. PubMed DOI PMC
Ting C. S., Hsieh C., Sundararaman S., Mannella C., Marko M. (2007). Cryo-electron tomography reveals the comparative three-dimensional architecture of PubMed DOI PMC
van de Meene A. M. L., Hohmann-Marriott M. F., Vermaas W. F. J., Roberson R. W. (2006). The three-dimensional structure of the cyanobacterium PubMed DOI
van Eykelenburg C. (1979). The ultrastructure of PubMed DOI
Whitton B. A. (1972). “Fine structure and taxonomy on the blue-green algae,” in
Wilde S. B., Johansen J. R., Wilde H. D., Jiang P., Bartelme B. A., Haynie R. S. (2014). DOI
Yokoyama R., Yamamoto H., Kondo M., Takeda S., Ifuku K., Fukao Y., et al. (2016). Grana-localized proteins, RIQ1 and RIQ2, affect the organization of light-harvesting Complex II and grana stacking in PubMed DOI PMC
Yoon H. S., Hackett J. D., Ciniglia C., Pinto G., Bhattacharya D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. PubMed DOI
Zhang S., Shen G., Li Z., Golbeck J. H., Bryant D. A. (2014). Vipp1 is essential for the biogenesis of photosystem I but not thylakoid membranes in PubMed DOI PMC
Zimba P. V., Huang I. S., Foley J. E., Linton E. W. (2017). Identification of a new-to-science cyanobacterium, PubMed DOI