Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy
Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article
PubMed
39649485
PubMed Central
PMC11586846
DOI
10.32615/ps.2023.043
PII: PS61483
Knihovny.cz E-resources
- Keywords
- Airyscan, FRAP, cyanobacteria, microdomain, photosystem, protein mobility, super-resolution microscopy, thylakoid membrane heterogeneity,
- Publication type
- Journal Article MeSH
The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.
See more in PubMed
Anderson J.M.: Consequences of spatial separation of photosystem 1 and photosystem 2 in thylakoid membranes of higher plant chloroplasts. – FEBS Lett. 124: 1-10, 1981. 10.1016/0014-5793(81)80041-5 DOI
Anderson J.M., Chow W.S., Park Y.-I.: The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. – Photosynth. Res. 46: 129-139, 1995. 10.1007/BF00020423 PubMed DOI
Andersson B., Anderson J.M.: Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. – BBA-Bioenergetics 593: 427-440, 1980. 10.1016/0005-2728(80)90078-X PubMed DOI
Austin J.R., Frost E., Vidi P.-A. et al.: Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. – Plant Cell 18: 1693-1703, 2006. 10.1105/tpc.105.039859 PubMed DOI PMC
Austin J.R., Staehelin L.A.: Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. – Plant Physiol. 155: 1601-1611, 2011. 10.1104/pp.110.170647 PubMed DOI PMC
Bhatti A.F., Kirilovsky D., van Amerongen H., Wientjes E.: State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. – Plant Physiol. 186: 569-580, 2021. 10.1093/plphys/kiab063 PubMed DOI PMC
Canonico M., Konert G., Crepin A. et al.: Gradual response of cyanobacterial thylakoids to acute high-light stress – importance of carotenoid accumulation. – Cells 10: 1916, 2021. 10.3390/cells10081916 PubMed DOI PMC
Canonico M., Konert G., Kaňa R.: Plasticity of cyanobacterial thylakoid microdomains under variable light conditions. – Front. Plant Sci. 11: 586543, 2020. 10.3389/fpls.2020.586543 PubMed DOI PMC
Casella S., Huang F., Mason D. et al.: Dissecting the native architecture and dynamics of cyanobacterial photosynthetic machinery. – Mol. Plant 10: 1434-1448, 2017. 10.1016/j.molp.2017.09.019 PubMed DOI PMC
Chenebault C., Diaz-Santos E., Kammerscheit X. et al.: A genetic toolbox for the new model cyanobacterium Cyanothece PCC 7425: A case study for the photosynthetic production of limonene. – Front. Microbiol. 11: 586601, 2020. 10.3389/fmicb.2020.586601 PubMed DOI PMC
Crepin A., Belgio E., Šedivá B. et al.: Size and fluorescence properties of algal photosynthetic antenna proteins estimated by microscopy. – Int. J. Mol. Sci. 23: 778, 2022. 10.3390/ijms23020778 PubMed DOI PMC
Crepin A., Cunill-Semanat E., Kuthanová Trsková E. et al.: Antenna protein clustering in vitro unveiled by fluorescence correlation spectroscopy. – Int. J. Mol. Sci. 22: 2969, 2021. 10.3390/ijms22062969 PubMed DOI PMC
Dekker J.P., Boekema E.J.: Supramolecular organization of thylakoid membrane proteins in green plants. – BBA-Bioenergetics 1706: 12-39, 2005. 10.1016/j.bbabio.2004.09.009 PubMed DOI
Engel B.D., Schaffer M., Cuellar L.K. et al.: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. – eLife 4: e04889, 2015. 10.7554/eLife.04889 PubMed DOI PMC
Flannery S.E., Pastorelli F., Emrich-Mills T.Z. et al.: STN7 is not essential for developmental acclimation of Arabidopsis to light intensity. – Plant J. 114: 1458-1474, 2023. 10.1111/tpj.16204 PubMed DOI PMC
Flori S., Jouneau P.-H., Bailleul B. et al.: Plastid thylakoid architecture optimizes photosynthesis in diatoms. – Nat. Commun. 8: 15885, 2017. 10.1038/ncomms15885 PubMed DOI PMC
Garab G., Ughy B., de Waard P. et al.: Lipid polymorphism in chloroplast thylakoid membranes – as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. – Sci. Rep.-UK 7: 13343, 2017. 10.1038/s41598-017-13574-y PubMed DOI PMC
Gasperotti A., Brameyer S., Fabiani F., Jung K.: Phenotypic heterogeneity of microbial populations under nutrient limitation. – Curr. Opin. Biotech. 62: 160-167, 2020. 10.1016/j.copbio.2019.09.016 PubMed DOI
Gu L., Grodzinski B., Han J. et al.: Granal thylakoid structure and function: explaining an enduring mystery of higher plants. – New Phytol. 236: 319-329, 2022. 10.1111/nph.18371 PubMed DOI PMC
Gutu A., Chang F., O'Shea E.K.: Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. – Mol. Microbiol. 108: 16-31, 2018. 10.1111/mmi.13912 PubMed DOI PMC
Gwizdala M., Botha J.L., Wilson A. et al.: Switching an individual phycobilisome off and on. – J. Phys. Chem. Lett. 9: 2426-2432, 2018. 10.1021/acs.jpclett.8b00767 PubMed DOI
Heinz S., Rast A., Shao L. et al.: Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. – Plant Cell 28: 2238-2260, 2016. 10.1105/tpc.16.00491 PubMed DOI PMC
Hepworth C., Wood W.H.J., Emrich-Mills T.Z. et al.: Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. – Nat. Plants 7: 87-98, 2021. 10.1038/s41477-020-00828-3 PubMed DOI
Herbstová M., Tietz S., Kinzel C. et al.: Architectural switch in plant photosynthetic membranes induced by light stress. – PNAS 109: 20130-20135, 2012. 10.1073/pnas.1214265109 PubMed DOI PMC
Huff J.: The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. – Nat. Methods 12: i-ii, 2015. 10.1038/nmeth.f.388 DOI
Huokko T., Ni T., Dykes G.F. et al.: Probing the biogenesis pathway and dynamics of thylakoid membranes. – Nat. Commun. 12: 3475, 2021. 10.1038/s41467-021-23680-1 PubMed DOI PMC
Iwai M., Pack C.-G., Takenaka Y. et al.: Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. – Sci. Rep.-UK 3: 2833, 2013. 10.1038/srep02833 PubMed DOI PMC
Iwai M., Roth M.S., Niyogi K.K.: Subdiffraction-resolution live-cell imaging for visualizing thylakoid membranes. – Plant J. 96: 233-243, 2018. 10.1111/tpj.14021 PubMed DOI PMC
Iwai M., Yokono M., Kurokawa K. et al.: Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. – Sci. Rep.-UK 6: 29940, 2016. 10.1038/srep29940 PubMed DOI PMC
Iwai M., Yokono M., Nakano A.: Visualizing structural dynamics of thylakoid membranes. – Sci. Rep.-UK 4: 3768, 2014. 10.1038/srep03768 PubMed DOI PMC
Jackson P.J., Hitchcock A., Brindley A.A. et al.: Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. – Photosynth. Res. 155: 219-245, 2023. 10.1007/s11120-022-00990-z PubMed DOI PMC
Joshua S., Mullineaux C.W.: Phycobilisome diffusion is required for light-state transitions in cyanobacteria. – Plant Physiol. 135: 2112-2119, 2004. 10.1104/pp.104.046110 PubMed DOI PMC
Kaňa R.: Mobility of photosynthetic proteins. – Photosynth. Res. 116: 465-479, 2013. 10.1007/s11120-013-9898-y PubMed DOI
Kaňa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. – BBA-Bioenergetics 1817: 1237-1247, 2012. 10.1016/j.bbabio.2012.02.024 PubMed DOI
Kaňa R., Prášil O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). – BBA-Bioenergetics 1787: 1170-1178, 2009. 10.1016/j.bbabio.2009.04.013 PubMed DOI
Kaňa R., Steinbach G., Sobotka R. et al.: Fast diffusion of the unassembled PetC1-GFP protein in the cyanobacterial thylakoid membrane. – Life 11: 15, 2021. 10.3390/life11010015 PubMed DOI PMC
Kirchhoff H.: Diffusion of molecules and macromolecules in thylakoid membranes. – BBA-Bioenergetics 1837: 495-502, 2014. 10.1016/j.bbabio.2013.11.003 PubMed DOI
Kirilovsky D., Büchel C.: Evolution and function of light-harvesting antenna in oxygenic photosynthesis. – In: Grimm B. (ed.): Advances in Botanical Research. Vol. 91. Pp. 247-293. Academic Press, London: 2019. 10.1016/bs.abr.2019.01.002 DOI
Komárek O., Felcmanová K., Šetlíková E. et al.: Microscopic measurements of the chlorophyll a fluorescence kinetics. – In: Suggett D.J., Prášil O., Borowitzka M.A. (ed.): Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Pp. 91-101. Springer, Dordrecht: 2010. 10.1007/978-90-481-9268-7_5 DOI
Konert G., Steinbach G., Canonico M., Kaňa R.: Protein arrangement factor: a new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. – Physiol. Plantarum 166: 264-277, 2019. 10.1111/ppl.12952 PubMed DOI
Krynická V., Skotnicová P., Jackson P.J. et al.: FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. – Plant Commun. 4: 100502, 2023. 10.1016/j.xplc.2022.100502 PubMed DOI PMC
Lepetit B., Goss R., Jakob T., Wilhelm C.: Molecular dynamics of the diatom thylakoid membrane under different light conditions. – Photosynth. Res. 111: 245-257, 2012. 10.1007/s11120-011-9633-5 PubMed DOI
Lippincott-Schwartz J., Snapp E.L., Phair R.D.: The development and enhancement of FRAP as a key tool for investigating protein dynamics. – Biophys. J. 115: 1146-1155, 2018. 10.1016/j.bpj.2018.08.007 PubMed DOI PMC
Liu L.-N., Bryan S.J., Huang F. et al.: Control of electron transport routes through redox-regulated redistribution of respiratory complexes. – PNAS 109: 11431-11436, 2012. 10.1073/pnas.1120960109 PubMed DOI PMC
Liu L.-N., Elmalk A.T., Aartsma T.J. et al.: Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. – PLoS ONE 3: e3134, 2008. 10.1371/journal.pone.0003134 PubMed DOI PMC
MacGregor-Chatwin C., Sener M., Barnett S.F.H. et al.: Lateral segregation of photosystem I in cyanobacterial thylakoids. – Plant Cell 29: 1119-1136, 2017. 10.1105/tpc.17.00071 PubMed DOI PMC
Mahbub M., Hemm L., Yang Y. et al.: mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. – Nat. Plants 6: 1179-1191, 2020. 10.1038/s41477-020-00764-2 PubMed DOI
Malacrida L., Hedde P.N., Ranjit S. et al.: Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions. – Biomed. Opt. Express 9: 303-321, 2018. 10.1364/BOE.9.000303 PubMed DOI PMC
Mareš J., Strunecký O., Bučinská L., Wiedermannová J.: Evolutionary patterns of thylakoid architecture in cyanobacteria. – Front. Microbiol. 10: 277, 2019. 10.3389/fmicb.2019.00277 PubMed DOI PMC
Mueller F., Mazza D., Stasevich T.J., McNally J.G.: FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? – Curr. Opin. Cell Biol. 22: 403-411, 2010. 10.1016/j.ceb.2010.03.002 PubMed DOI PMC
Mueller F., Morisaki T., Mazza D., McNally J.G.: Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis. – Biophys. J. 102: 1656-1665, 2012. 10.1016/j.bpj.2012.02.029 PubMed DOI PMC
Mullineaux C.W.: Function and evolution of grana. – Trends Plant Sci. 10: 521-525, 2005. 10.1016/j.tplants.2005.09.001 PubMed DOI
Mullineaux C.W.: Factors controlling the mobility of photosynthetic proteins. – Photochem. Photobiol. 84: 1310-1316, 2008. 10.1111/j.1751-1097.2008.00420.x PubMed DOI
Mullineaux C.W., Liu L.-N.: Membrane dynamics in phototrophic bacteria. – Annu. Rev. Microbiol. 74: 633-654, 2020. 10.1146/annurev-micro-020518-120134 PubMed DOI
Mullineaux C.W., Tobin M.J., Jones G.R.: Mobility of photosynthetic complexes in thylakoid membranes. – Nature 390: 421-424, 1997. 10.1038/37157 DOI
Mustárdy L., Garab G.: Granum revisited. A three-dimensional model – where things fall into place. – Trends Plant Sci. 8: 117-122, 2003. 10.1016/S1360-1385(03)00015-3 PubMed DOI
Muzzopappa F., Kirilovsky D.: Changing color for photoprotection: The orange carotenoid protein. – Trends Plant Sci. 25: 92-104, 2020. 10.1016/j.tplants.2019.09.013 PubMed DOI
Pribil M., Labs M., Leister D.: Structure and dynamics of thylakoids in land plants. – J. Exp. Bot. 65: 1955-1972, 2014. 10.1093/jxb/eru090 PubMed DOI
Rast A., Schaffer M., Albert S. et al.: Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. – Nat. Plants 5: 436-446, 2019. 10.1038/s41477-019-0399-7 PubMed DOI
Scipioni L., Lanzanó L., Diaspro A., Gratton E.: Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector. – Nat. Commun. 9: 5120, 2018. 10.1038/s41467-018-07513-2 PubMed DOI PMC
Solymosi K.: Plastid structure, diversification and interconversions I. Algae. – Curr. Chem. Biol. 6: 167-186, 2012. 10.2174/2212796811206030002 DOI
Steinbach G., Schubert F., Kaňa R.: Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells. – J. Photoch. Photobio. B 152: 395-399, 2015. 10.1016/j.jphotobiol.2015.10.003 PubMed DOI
Strašková A., Knoppová J., Komenda J.: Isolation of the cyanobacterial YFP-tagged photosystem I using GFP-Trap®. – Photosynthetica 56: 300-305, 2018. 10.1007/s11099-018-0771-2 DOI
Strašková A., Steinbach G., Konert G. et al.: Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. – BBA-Bioenergetics 1860: 148053, 2019. 10.1016/j.bbabio.2019.07.008 PubMed DOI
Tichý M., Bečková M., Kopečná J. et al.: Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. – Front. Plant Sci. 7: 648, 2016. 10.3389/fpls.2016.00648 PubMed DOI PMC
Verhoeven D., van Amerongen H., Wientjes E.: Single chloroplast in folio imaging sheds light on photosystem energy redistribution during state transitions. – Plant Physiol. 191: 1186-1198, 2023. 10.1093/plphys/kiac561 PubMed DOI PMC
Vermaas W.F.J., Timlin J.A., Jones H.D.T. et al.: In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. – PNAS 105: 4050-4055, 2008. 10.1073/pnas.0708090105 PubMed DOI PMC
Wassie A.T., Zhao Y., Boyden E.S.: Expansion microscopy: principles and uses in biological research. – Nat. Methods 16: 33-41, 2019. 10.1038/s41592-018-0219-4 PubMed DOI PMC
Weiner E., Pinskey J.M., Nicastro D., Otegui M.S.: Electron microscopy for imaging organelles in plants and algae. – Plant Physiol. 188: 713-725, 2022. 10.1093/plphys/kiab449 PubMed DOI PMC
Wilhelm C., Goss R., Garab G.: The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? – J. Plant Physiol. 252: 153246, 2020. 10.1016/j.jplph.2020.153246 PubMed DOI
Williams J.G.K.: Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. – Method. Enzymol. 167: 766-778, 1988. 10.1016/0076-6879(88)67088-1 DOI
Wilson A., Ajlani G., Verbavatz J.-M. et al.: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. – Plant Cell 18: 992-1007, 2006. 10.1105/tpc.105.040121 PubMed DOI PMC
Yokoo R., Hood R.D., Savage D.F.: Live-cell imaging of cyanobacteria. – Photosynth. Res. 126: 33-46, 2015. 10.1007/s11120-014-0049-x PubMed DOI
Zhang Z., Zhao L.-S., Liu L.-N.: Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria. – Royal Soc. Open Sci. 8: 202142, 2021. 10.1098/rsos.202142 PubMed DOI PMC
Zhao L.-S., Li C.-Y., Chen X.-L. et al.: Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium. – Plant Physiol. 190: 1883-1895, 2022. 10.1093/plphys/kiac372 PubMed DOI PMC