Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy

. 2023 ; 61 (4) : 483-491. [epub] 20231218

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649485

The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.

Zobrazit více v PubMed

Anderson J.M.: Consequences of spatial separation of photosystem 1 and photosystem 2 in thylakoid membranes of higher plant chloroplasts. – FEBS Lett. 124: 1-10, 1981. 10.1016/0014-5793(81)80041-5 DOI

Anderson J.M., Chow W.S., Park Y.-I.: The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. – Photosynth. Res. 46: 129-139, 1995. 10.1007/BF00020423 PubMed DOI

Andersson B., Anderson J.M.: Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. – BBA-Bioenergetics 593: 427-440, 1980. 10.1016/0005-2728(80)90078-X PubMed DOI

Austin J.R., Frost E., Vidi P.-A. et al.: Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. – Plant Cell 18: 1693-1703, 2006. 10.1105/tpc.105.039859 PubMed DOI PMC

Austin J.R., Staehelin L.A.: Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. – Plant Physiol. 155: 1601-1611, 2011. 10.1104/pp.110.170647 PubMed DOI PMC

Bhatti A.F., Kirilovsky D., van Amerongen H., Wientjes E.: State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. – Plant Physiol. 186: 569-580, 2021. 10.1093/plphys/kiab063 PubMed DOI PMC

Canonico M., Konert G., Crepin A. et al.: Gradual response of cyanobacterial thylakoids to acute high-light stress – importance of carotenoid accumulation. – Cells 10: 1916, 2021. 10.3390/cells10081916 PubMed DOI PMC

Canonico M., Konert G., Kaňa R.: Plasticity of cyanobacterial thylakoid microdomains under variable light conditions. – Front. Plant Sci. 11: 586543, 2020. 10.3389/fpls.2020.586543 PubMed DOI PMC

Casella S., Huang F., Mason D. et al.: Dissecting the native architecture and dynamics of cyanobacterial photosynthetic machinery. – Mol. Plant 10: 1434-1448, 2017. 10.1016/j.molp.2017.09.019 PubMed DOI PMC

Chenebault C., Diaz-Santos E., Kammerscheit X. et al.: A genetic toolbox for the new model cyanobacterium Cyanothece PCC 7425: A case study for the photosynthetic production of limonene. – Front. Microbiol. 11: 586601, 2020. 10.3389/fmicb.2020.586601 PubMed DOI PMC

Crepin A., Belgio E., Šedivá B. et al.: Size and fluorescence properties of algal photosynthetic antenna proteins estimated by microscopy. – Int. J. Mol. Sci. 23: 778, 2022. 10.3390/ijms23020778 PubMed DOI PMC

Crepin A., Cunill-Semanat E., Kuthanová Trsková E. et al.: Antenna protein clustering in vitro unveiled by fluorescence correlation spectroscopy. – Int. J. Mol. Sci. 22: 2969, 2021. 10.3390/ijms22062969 PubMed DOI PMC

Dekker J.P., Boekema E.J.: Supramolecular organization of thylakoid membrane proteins in green plants. – BBA-Bioenergetics 1706: 12-39, 2005. 10.1016/j.bbabio.2004.09.009 PubMed DOI

Engel B.D., Schaffer M., Cuellar L.K. et al.: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. – eLife 4: e04889, 2015. 10.7554/eLife.04889 PubMed DOI PMC

Flannery S.E., Pastorelli F., Emrich-Mills T.Z. et al.: STN7 is not essential for developmental acclimation of Arabidopsis to light intensity. – Plant J. 114: 1458-1474, 2023. 10.1111/tpj.16204 PubMed DOI PMC

Flori S., Jouneau P.-H., Bailleul B. et al.: Plastid thylakoid architecture optimizes photosynthesis in diatoms. – Nat. Commun. 8: 15885, 2017. 10.1038/ncomms15885 PubMed DOI PMC

Garab G., Ughy B., de Waard P. et al.: Lipid polymorphism in chloroplast thylakoid membranes – as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. – Sci. Rep.-UK 7: 13343, 2017. 10.1038/s41598-017-13574-y PubMed DOI PMC

Gasperotti A., Brameyer S., Fabiani F., Jung K.: Phenotypic heterogeneity of microbial populations under nutrient limitation. – Curr. Opin. Biotech. 62: 160-167, 2020. 10.1016/j.copbio.2019.09.016 PubMed DOI

Gu L., Grodzinski B., Han J. et al.: Granal thylakoid structure and function: explaining an enduring mystery of higher plants. – New Phytol. 236: 319-329, 2022. 10.1111/nph.18371 PubMed DOI PMC

Gutu A., Chang F., O'Shea E.K.: Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. – Mol. Microbiol. 108: 16-31, 2018. 10.1111/mmi.13912 PubMed DOI PMC

Gwizdala M., Botha J.L., Wilson A. et al.: Switching an individual phycobilisome off and on. – J. Phys. Chem. Lett. 9: 2426-2432, 2018. 10.1021/acs.jpclett.8b00767 PubMed DOI

Heinz S., Rast A., Shao L. et al.: Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. – Plant Cell 28: 2238-2260, 2016. 10.1105/tpc.16.00491 PubMed DOI PMC

Hepworth C., Wood W.H.J., Emrich-Mills T.Z. et al.: Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. – Nat. Plants 7: 87-98, 2021. 10.1038/s41477-020-00828-3 PubMed DOI

Herbstová M., Tietz S., Kinzel C. et al.: Architectural switch in plant photosynthetic membranes induced by light stress. – PNAS 109: 20130-20135, 2012. 10.1073/pnas.1214265109 PubMed DOI PMC

Huff J.: The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. – Nat. Methods 12: i-ii, 2015. 10.1038/nmeth.f.388 DOI

Huokko T., Ni T., Dykes G.F. et al.: Probing the biogenesis pathway and dynamics of thylakoid membranes. – Nat. Commun. 12: 3475, 2021. 10.1038/s41467-021-23680-1 PubMed DOI PMC

Iwai M., Pack C.-G., Takenaka Y. et al.: Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. – Sci. Rep.-UK 3: 2833, 2013. 10.1038/srep02833 PubMed DOI PMC

Iwai M., Roth M.S., Niyogi K.K.: Subdiffraction-resolution live-cell imaging for visualizing thylakoid membranes. – Plant J. 96: 233-243, 2018. 10.1111/tpj.14021 PubMed DOI PMC

Iwai M., Yokono M., Kurokawa K. et al.: Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. – Sci. Rep.-UK 6: 29940, 2016. 10.1038/srep29940 PubMed DOI PMC

Iwai M., Yokono M., Nakano A.: Visualizing structural dynamics of thylakoid membranes. – Sci. Rep.-UK 4: 3768, 2014. 10.1038/srep03768 PubMed DOI PMC

Jackson P.J., Hitchcock A., Brindley A.A. et al.: Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. – Photosynth. Res. 155: 219-245, 2023. 10.1007/s11120-022-00990-z PubMed DOI PMC

Joshua S., Mullineaux C.W.: Phycobilisome diffusion is required for light-state transitions in cyanobacteria. – Plant Physiol. 135: 2112-2119, 2004. 10.1104/pp.104.046110 PubMed DOI PMC

Kaňa R.: Mobility of photosynthetic proteins. – Photosynth. Res. 116: 465-479, 2013. 10.1007/s11120-013-9898-y PubMed DOI

Kaňa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. – BBA-Bioenergetics 1817: 1237-1247, 2012. 10.1016/j.bbabio.2012.02.024 PubMed DOI

Kaňa R., Prášil O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). – BBA-Bioenergetics 1787: 1170-1178, 2009. 10.1016/j.bbabio.2009.04.013 PubMed DOI

Kaňa R., Steinbach G., Sobotka R. et al.: Fast diffusion of the unassembled PetC1-GFP protein in the cyanobacterial thylakoid membrane. – Life 11: 15, 2021. 10.3390/life11010015 PubMed DOI PMC

Kirchhoff H.: Diffusion of molecules and macromolecules in thylakoid membranes. – BBA-Bioenergetics 1837: 495-502, 2014. 10.1016/j.bbabio.2013.11.003 PubMed DOI

Kirilovsky D., Büchel C.: Evolution and function of light-harvesting antenna in oxygenic photosynthesis. – In: Grimm B. (ed.): Advances in Botanical Research. Vol. 91. Pp. 247-293. Academic Press, London: 2019. 10.1016/bs.abr.2019.01.002 DOI

Komárek O., Felcmanová K., Šetlíková E. et al.: Microscopic measurements of the chlorophyll a fluorescence kinetics. – In: Suggett D.J., Prášil O., Borowitzka M.A. (ed.): Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Pp. 91-101. Springer, Dordrecht: 2010. 10.1007/978-90-481-9268-7_5 DOI

Konert G., Steinbach G., Canonico M., Kaňa R.: Protein arrangement factor: a new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. – Physiol. Plantarum 166: 264-277, 2019. 10.1111/ppl.12952 PubMed DOI

Krynická V., Skotnicová P., Jackson P.J. et al.: FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. – Plant Commun. 4: 100502, 2023. 10.1016/j.xplc.2022.100502 PubMed DOI PMC

Lepetit B., Goss R., Jakob T., Wilhelm C.: Molecular dynamics of the diatom thylakoid membrane under different light conditions. – Photosynth. Res. 111: 245-257, 2012. 10.1007/s11120-011-9633-5 PubMed DOI

Lippincott-Schwartz J., Snapp E.L., Phair R.D.: The development and enhancement of FRAP as a key tool for investigating protein dynamics. – Biophys. J. 115: 1146-1155, 2018. 10.1016/j.bpj.2018.08.007 PubMed DOI PMC

Liu L.-N., Bryan S.J., Huang F. et al.: Control of electron transport routes through redox-regulated redistribution of respiratory complexes. – PNAS 109: 11431-11436, 2012. 10.1073/pnas.1120960109 PubMed DOI PMC

Liu L.-N., Elmalk A.T., Aartsma T.J. et al.: Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. – PLoS ONE 3: e3134, 2008. 10.1371/journal.pone.0003134 PubMed DOI PMC

MacGregor-Chatwin C., Sener M., Barnett S.F.H. et al.: Lateral segregation of photosystem I in cyanobacterial thylakoids. – Plant Cell 29: 1119-1136, 2017. 10.1105/tpc.17.00071 PubMed DOI PMC

Mahbub M., Hemm L., Yang Y. et al.: mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. – Nat. Plants 6: 1179-1191, 2020. 10.1038/s41477-020-00764-2 PubMed DOI

Malacrida L., Hedde P.N., Ranjit S. et al.: Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions. – Biomed. Opt. Express 9: 303-321, 2018. 10.1364/BOE.9.000303 PubMed DOI PMC

Mareš J., Strunecký O., Bučinská L., Wiedermannová J.: Evolutionary patterns of thylakoid architecture in cyanobacteria. – Front. Microbiol. 10: 277, 2019. 10.3389/fmicb.2019.00277 PubMed DOI PMC

Mueller F., Mazza D., Stasevich T.J., McNally J.G.: FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? – Curr. Opin. Cell Biol. 22: 403-411, 2010. 10.1016/j.ceb.2010.03.002 PubMed DOI PMC

Mueller F., Morisaki T., Mazza D., McNally J.G.: Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis. – Biophys. J. 102: 1656-1665, 2012. 10.1016/j.bpj.2012.02.029 PubMed DOI PMC

Mullineaux C.W.: Function and evolution of grana. – Trends Plant Sci. 10: 521-525, 2005. 10.1016/j.tplants.2005.09.001 PubMed DOI

Mullineaux C.W.: Factors controlling the mobility of photosynthetic proteins. – Photochem. Photobiol. 84: 1310-1316, 2008. 10.1111/j.1751-1097.2008.00420.x PubMed DOI

Mullineaux C.W., Liu L.-N.: Membrane dynamics in phototrophic bacteria. – Annu. Rev. Microbiol. 74: 633-654, 2020. 10.1146/annurev-micro-020518-120134 PubMed DOI

Mullineaux C.W., Tobin M.J., Jones G.R.: Mobility of photosynthetic complexes in thylakoid membranes. – Nature 390: 421-424, 1997. 10.1038/37157 DOI

Mustárdy L., Garab G.: Granum revisited. A three-dimensional model – where things fall into place. – Trends Plant Sci. 8: 117-122, 2003. 10.1016/S1360-1385(03)00015-3 PubMed DOI

Muzzopappa F., Kirilovsky D.: Changing color for photoprotection: The orange carotenoid protein. – Trends Plant Sci. 25: 92-104, 2020. 10.1016/j.tplants.2019.09.013 PubMed DOI

Pribil M., Labs M., Leister D.: Structure and dynamics of thylakoids in land plants. – J. Exp. Bot. 65: 1955-1972, 2014. 10.1093/jxb/eru090 PubMed DOI

Rast A., Schaffer M., Albert S. et al.: Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. – Nat. Plants 5: 436-446, 2019. 10.1038/s41477-019-0399-7 PubMed DOI

Scipioni L., Lanzanó L., Diaspro A., Gratton E.: Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector. – Nat. Commun. 9: 5120, 2018. 10.1038/s41467-018-07513-2 PubMed DOI PMC

Solymosi K.: Plastid structure, diversification and interconversions I. Algae. – Curr. Chem. Biol. 6: 167-186, 2012. 10.2174/2212796811206030002 DOI

Steinbach G., Schubert F., Kaňa R.: Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells. – J. Photoch. Photobio. B 152: 395-399, 2015. 10.1016/j.jphotobiol.2015.10.003 PubMed DOI

Strašková A., Knoppová J., Komenda J.: Isolation of the cyanobacterial YFP-tagged photosystem I using GFP-Trap®. – Photosynthetica 56: 300-305, 2018. 10.1007/s11099-018-0771-2 DOI

Strašková A., Steinbach G., Konert G. et al.: Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. – BBA-Bioenergetics 1860: 148053, 2019. 10.1016/j.bbabio.2019.07.008 PubMed DOI

Tichý M., Bečková M., Kopečná J. et al.: Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. – Front. Plant Sci. 7: 648, 2016. 10.3389/fpls.2016.00648 PubMed DOI PMC

Verhoeven D., van Amerongen H., Wientjes E.: Single chloroplast in folio imaging sheds light on photosystem energy redistribution during state transitions. – Plant Physiol. 191: 1186-1198, 2023. 10.1093/plphys/kiac561 PubMed DOI PMC

Vermaas W.F.J., Timlin J.A., Jones H.D.T. et al.: In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. – PNAS 105: 4050-4055, 2008. 10.1073/pnas.0708090105 PubMed DOI PMC

Wassie A.T., Zhao Y., Boyden E.S.: Expansion microscopy: principles and uses in biological research. – Nat. Methods 16: 33-41, 2019. 10.1038/s41592-018-0219-4 PubMed DOI PMC

Weiner E., Pinskey J.M., Nicastro D., Otegui M.S.: Electron microscopy for imaging organelles in plants and algae. – Plant Physiol. 188: 713-725, 2022. 10.1093/plphys/kiab449 PubMed DOI PMC

Wilhelm C., Goss R., Garab G.: The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? – J. Plant Physiol. 252: 153246, 2020. 10.1016/j.jplph.2020.153246 PubMed DOI

Williams J.G.K.: Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. – Method. Enzymol. 167: 766-778, 1988. 10.1016/0076-6879(88)67088-1 DOI

Wilson A., Ajlani G., Verbavatz J.-M. et al.: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. – Plant Cell 18: 992-1007, 2006. 10.1105/tpc.105.040121 PubMed DOI PMC

Yokoo R., Hood R.D., Savage D.F.: Live-cell imaging of cyanobacteria. – Photosynth. Res. 126: 33-46, 2015. 10.1007/s11120-014-0049-x PubMed DOI

Zhang Z., Zhao L.-S., Liu L.-N.: Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria. – Royal Soc. Open Sci. 8: 202142, 2021. 10.1098/rsos.202142 PubMed DOI PMC

Zhao L.-S., Li C.-Y., Chen X.-L. et al.: Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium. – Plant Physiol. 190: 1883-1895, 2022. 10.1093/plphys/kiac372 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...