Size and Fluorescence Properties of Algal Photosynthetic Antenna Proteins Estimated by Microscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-10088S
Czech Science Foundation
MSMT LO1416
Czech Ministry of Education, Youth and Sport
CZ 1.05/2.1.00/19.0392
Czech Ministry of Education, Youth and Sport
PubMed
35054961
PubMed Central
PMC8775774
DOI
10.3390/ijms23020778
PII: ijms23020778
Knihovny.cz E-zdroje
- Klíčová slova
- Chromera velia, antenna proteins, fluorescence correlation spectroscopy, light-harvesting, microscopy, photosynthesis, protein diffusion, protein oligomerization,
- MeSH
- bílkoviny řas chemie metabolismus MeSH
- fluorescence * MeSH
- fluorescenční spektrometrie MeSH
- fotosyntéza * MeSH
- kinetika MeSH
- multimerizace proteinu MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bílkoviny řas MeSH
Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.
Zobrazit více v PubMed
Falkowski P.G., Owens T.G. Light-Shade Adaptation: Two Strategies In Marine Phytoplankton. Plant. Physiol. 1980;66:592–595. doi: 10.1104/pp.66.4.592. PubMed DOI PMC
Anderson J.M., Andersson B. The Dynamic Photosynthetic Membrane and Regulation of Solar-Energy Conversion. Trends Biochem. Sci. 1988;13:351–355. doi: 10.1016/0968-0004(88)90106-5. PubMed DOI
Bonente G., Pippa S., Castellano S., Bassi R., Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J. Biol. Chem. 2012;287:5833–5847. doi: 10.1074/jbc.M111.304279. PubMed DOI PMC
Kouril R., Dekker J.P., Boekema E.J. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta. 2012;1817:2–12. doi: 10.1016/j.bbabio.2011.05.024. PubMed DOI
Kotabova E., Jaresova J., Kana R., Sobotka R., Bina D., Prasil O. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim. Biophys. Acta. 2014;1837:734–743. doi: 10.1016/j.bbabio.2014.01.012. PubMed DOI
Belgio E., Trskova E., Kotabova E., Ewe D., Prasil O., Kana R. High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth. Res. 2018;135:263–274. doi: 10.1007/s11120-017-0385-8. PubMed DOI
Ruban A.V. Light harvesting control in plants. FEBS Lett. 2018;592:3030–3039. doi: 10.1002/1873-3468.13111. PubMed DOI
Pinnola A. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. J. Exp. Bot. 2019;70:5527–5535. doi: 10.1093/jxb/erz317. PubMed DOI
Su X., Ma J., Wei X., Cao P., Zhu D., Chang W., Liu Z., Zhang X., Li M. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science. 2017;357:815–820. doi: 10.1126/science.aan0327. PubMed DOI
Nagao R., Kato K., Suzuki T., Ifuku K., Uchiyama I., Kashino Y., Dohmae N., Akimoto S., Shen J.R., Miyazaki N., et al. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. Nat. Plants. 2019;5:890–901. doi: 10.1038/s41477-019-0477-x. PubMed DOI
Pi X., Zhao S., Wang W., Liu D., Xu C., Han G., Kuang T., Sui S.F., Shen J.R. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science. 2019;365 doi: 10.1126/science.aax4406. PubMed DOI
Arshad R., Calvaruso C., Boekema E.J., Buchel C., Kouril R. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. Plant. Physiol. 2021 doi: 10.1093/plphys/kiab208. PubMed DOI PMC
Wentworth M., Ruban A.V., Horton P. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. Biochemistry. 2004;43:501–509. doi: 10.1021/bi034975i. PubMed DOI
Janik E., Bednarska J., Zubik M., Sowinski K., Luchowski R., Grudzinski W., Gruszecki W.I. Is It Beneficial for the Major Photosynthetic Antenna Complex of Plants To Form Trimers? J. Phys. Chem. B. 2015;119:8501–8508. doi: 10.1021/acs.jpcb.5b04005. PubMed DOI
Ruban A.V., Young A.J., Horton P. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry. 1996;35:674–678. doi: 10.1021/bi9524878. PubMed DOI
Garab G., Cseh Z., Kovacs L., Rajagopal S., Varkonyi Z., Wentworth M., Mustardy L., Der A., Ruban A.V., Papp E., et al. Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: Thermo-optic mechanism. Biochemistry. 2002;41:15121–15129. doi: 10.1021/bi026157g. PubMed DOI
Janik E., Bednarska J., Sowinski K., Luchowski R., Zubik M., Grudzinski W., Gruszecki W.I. Light-induced formation of dimeric LHCII. Photosynth. Res. 2017;132:265–276. doi: 10.1007/s11120-017-0387-6. PubMed DOI PMC
Kirchhoff H., Haase W., Wegner S., Danielsson R., Ackermann R., Albertsson P.A. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI
Caffrey M. Membrane protein crystallization. J. Struct. Biol. 2003;142:108–132. doi: 10.1016/S1047-8477(03)00043-1. PubMed DOI
Buchel C. Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry. 2003;42:13027–13034. doi: 10.1021/bi0349468. PubMed DOI
Bina D., Gardian Z., Herbstova M., Kotabova E., Konik P., Litvin R., Prasil O., Tichy J., Vacha F. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim. Biophys. Acta. 2014;1837:802–810. doi: 10.1016/j.bbabio.2014.01.011. PubMed DOI
Wei X., Su X., Cao P., Liu X., Chang W., Li M., Zhang X., Liu Z. Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI
Van Bezouwen L.S., Caffarri S., Kale R.S., Kouril R., Thunnissen A.W.H., Oostergetel G.T., Boekema E.J. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants. 2017;3:17080. doi: 10.1038/nplants.2017.80. PubMed DOI
Pi X., Tian L., Dai H.E., Qin X., Cheng L., Kuang T., Sui S.F., Shen J.R. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl. Acad. Sci. USA. 2018;115:4423–4428. doi: 10.1073/pnas.1722482115. PubMed DOI PMC
Burton-Smith R.N., Watanabe A., Tokutsu R., Song C., Murata K., Minagawa J. Structural determination of the large photosystem II-light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. J. Biol. Chem. 2019;294:15003–15013. doi: 10.1074/jbc.RA119.009341. PubMed DOI PMC
Qin X., Pi X., Wang W., Han G., Zhu L., Liu M., Cheng L., Shen J.R., Kuang T., Sui S.F. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat. Plants. 2019;5:263–272. doi: 10.1038/s41477-019-0379-y. PubMed DOI
Shen L., Huang Z., Chang S., Wang W., Wang J., Kuang T., Han G., Shen J.R., Zhang X. Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2019;116:21246–21255. doi: 10.1073/pnas.1912462116. PubMed DOI PMC
Sheng X., Watanabe A., Li A., Kim E., Song C., Murata K., Song D., Minagawa J., Liu Z. Structural insight into light harvesting for photosystem II in green algae. Nat. Plants. 2019;5:1320–1330. doi: 10.1038/s41477-019-0543-4. PubMed DOI
Suga M., Ozawa S.I., Yoshida-Motomura K., Akita F., Miyazaki N., Takahashi Y. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants. 2019;5:626–636. doi: 10.1038/s41477-019-0438-4. PubMed DOI
Wang W., Yu L.J., Xu C., Tomizaki T., Zhao S., Umena Y., Chen X., Qin X., Xin Y., Suga M., et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science. 2019;363 doi: 10.1126/science.aav0365. PubMed DOI
Gelzinis A., Augulis R., Buchel C., Robert B., Valkunas L. Confronting FCP structure with ultrafast spectroscopy data: Evidence for structural variations. Phys. Chem. Chem. Phys. PCCP. 2021;23:806–821. doi: 10.1039/D0CP05578F. PubMed DOI
Tichy J., Gardian Z., Bina D., Konik P., Litvin R., Herbstova M., Pain A., Vacha F. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim. Biophys. Acta. 2013;1827:723–729. doi: 10.1016/j.bbabio.2013.02.002. PubMed DOI
Llansola-Portoles M.J., Uragami C., Pascal A.A., Bina D., Litvin R., Robert B. Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim. Biophys. Acta. 2016;1857:1759–1765. doi: 10.1016/j.bbabio.2016.08.006. PubMed DOI
Crepin A., Cunill-Semanat E., Kuthanova Trskova E., Belgio E., Kana R. Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int. J. Mol. Sci. 2021;22:2969. doi: 10.3390/ijms22062969. PubMed DOI PMC
Kuthanova Trskova E., Belgio E., Yeates A.M., Sobotka R., Ruban A.V., Kana R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. J. Exp. Bot. 2018;69:4483–4493. doi: 10.1093/jxb/ery240. PubMed DOI PMC
Caffarri S., Kouril R., Kereiche S., Boekema E.J., Croce R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 2009;28:3052–3063. doi: 10.1038/emboj.2009.232. PubMed DOI PMC
Crepin A., Santabarbara S., Caffarri S. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis. J. Biol. Chem. 2016;291:19157–19171. doi: 10.1074/jbc.M116.738054. PubMed DOI PMC
Johnson M.P., Wientjes E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim. Biophys. Acta. Bioenerg. 2020;1861:148039. doi: 10.1016/j.bbabio.2019.06.011. PubMed DOI
Elson E.L. Fluorescence correlation spectroscopy: Past, present, future. Biophys. J. 2011;101:2855–2870. doi: 10.1016/j.bpj.2011.11.012. PubMed DOI PMC
David L., Prado M., Arteni A.A., Elmlund D.A., Blankenship R.E., Adir N. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly. Biochim. Biophys. Acta. 2014;1837:385–395. doi: 10.1016/j.bbabio.2013.12.014. PubMed DOI
Iwai M., Pack C.G., Takenaka Y., Sako Y., Nakano A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci. Rep. 2013;3:2833. doi: 10.1038/srep02833. PubMed DOI PMC
Kana R., Steinbach G., Sobotka R., Vamosi G., Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life. 2020;11:15. doi: 10.3390/life11010015. PubMed DOI PMC
Lepetit B., Volke D., Gilbert M., Wilhelm C., Goss R. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant. Physiol. 2010;154:1905–1920. doi: 10.1104/pp.110.166454. PubMed DOI PMC
Scarff C.A., Fuller M.J.G., Thompson R.F., Iadaza M.G. Variations on Negative Stain Electron Microscopy Methods: Tools for Tackling Challenging Systems. J. Vis. Exp. 2018;6:e57199. doi: 10.3791/57199. PubMed DOI PMC
Van Oort B., van Hoek A., Ruban A.V., van Amerongen H. Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett. 2007;581:3528–3532. doi: 10.1016/j.febslet.2007.06.070. PubMed DOI
Gregg W.W., Rousseaux C.S. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production. Front. Mar. Sci. 2016;3 doi: 10.3389/fmars.2016.00240. DOI
Neilson J.A., Durnford D.G. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res. 2010;106:57–71. doi: 10.1007/s11120-010-9576-2. PubMed DOI
Saccon F., Durchan M., Polivka T., Ruban A.V. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2020;19:1308–1318. doi: 10.1039/D0PP00174K. PubMed DOI
Kana R., Kotabova E., Kopecna J., Trskova E., Belgio E., Sobotka R., Ruban A.V. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Lett. 2016;590:1076–1085. doi: 10.1002/1873-3468.12130. PubMed DOI
Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 1944;2:164–168. doi: 10.1090/qam/10666. DOI