Size and Fluorescence Properties of Algal Photosynthetic Antenna Proteins Estimated by Microscopy

. 2022 Jan 11 ; 23 (2) : . [epub] 20220111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054961

Grantová podpora
16-10088S Czech Science Foundation
MSMT LO1416 Czech Ministry of Education, Youth and Sport
CZ 1.05/2.1.00/19.0392 Czech Ministry of Education, Youth and Sport

Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.

Zobrazit více v PubMed

Falkowski P.G., Owens T.G. Light-Shade Adaptation: Two Strategies In Marine Phytoplankton. Plant. Physiol. 1980;66:592–595. doi: 10.1104/pp.66.4.592. PubMed DOI PMC

Anderson J.M., Andersson B. The Dynamic Photosynthetic Membrane and Regulation of Solar-Energy Conversion. Trends Biochem. Sci. 1988;13:351–355. doi: 10.1016/0968-0004(88)90106-5. PubMed DOI

Bonente G., Pippa S., Castellano S., Bassi R., Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J. Biol. Chem. 2012;287:5833–5847. doi: 10.1074/jbc.M111.304279. PubMed DOI PMC

Kouril R., Dekker J.P., Boekema E.J. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta. 2012;1817:2–12. doi: 10.1016/j.bbabio.2011.05.024. PubMed DOI

Kotabova E., Jaresova J., Kana R., Sobotka R., Bina D., Prasil O. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim. Biophys. Acta. 2014;1837:734–743. doi: 10.1016/j.bbabio.2014.01.012. PubMed DOI

Belgio E., Trskova E., Kotabova E., Ewe D., Prasil O., Kana R. High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth. Res. 2018;135:263–274. doi: 10.1007/s11120-017-0385-8. PubMed DOI

Ruban A.V. Light harvesting control in plants. FEBS Lett. 2018;592:3030–3039. doi: 10.1002/1873-3468.13111. PubMed DOI

Pinnola A. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. J. Exp. Bot. 2019;70:5527–5535. doi: 10.1093/jxb/erz317. PubMed DOI

Su X., Ma J., Wei X., Cao P., Zhu D., Chang W., Liu Z., Zhang X., Li M. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science. 2017;357:815–820. doi: 10.1126/science.aan0327. PubMed DOI

Nagao R., Kato K., Suzuki T., Ifuku K., Uchiyama I., Kashino Y., Dohmae N., Akimoto S., Shen J.R., Miyazaki N., et al. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. Nat. Plants. 2019;5:890–901. doi: 10.1038/s41477-019-0477-x. PubMed DOI

Pi X., Zhao S., Wang W., Liu D., Xu C., Han G., Kuang T., Sui S.F., Shen J.R. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science. 2019;365 doi: 10.1126/science.aax4406. PubMed DOI

Arshad R., Calvaruso C., Boekema E.J., Buchel C., Kouril R. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. Plant. Physiol. 2021 doi: 10.1093/plphys/kiab208. PubMed DOI PMC

Wentworth M., Ruban A.V., Horton P. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. Biochemistry. 2004;43:501–509. doi: 10.1021/bi034975i. PubMed DOI

Janik E., Bednarska J., Zubik M., Sowinski K., Luchowski R., Grudzinski W., Gruszecki W.I. Is It Beneficial for the Major Photosynthetic Antenna Complex of Plants To Form Trimers? J. Phys. Chem. B. 2015;119:8501–8508. doi: 10.1021/acs.jpcb.5b04005. PubMed DOI

Ruban A.V., Young A.J., Horton P. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry. 1996;35:674–678. doi: 10.1021/bi9524878. PubMed DOI

Garab G., Cseh Z., Kovacs L., Rajagopal S., Varkonyi Z., Wentworth M., Mustardy L., Der A., Ruban A.V., Papp E., et al. Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: Thermo-optic mechanism. Biochemistry. 2002;41:15121–15129. doi: 10.1021/bi026157g. PubMed DOI

Janik E., Bednarska J., Sowinski K., Luchowski R., Zubik M., Grudzinski W., Gruszecki W.I. Light-induced formation of dimeric LHCII. Photosynth. Res. 2017;132:265–276. doi: 10.1007/s11120-017-0387-6. PubMed DOI PMC

Kirchhoff H., Haase W., Wegner S., Danielsson R., Ackermann R., Albertsson P.A. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI

Caffrey M. Membrane protein crystallization. J. Struct. Biol. 2003;142:108–132. doi: 10.1016/S1047-8477(03)00043-1. PubMed DOI

Buchel C. Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry. 2003;42:13027–13034. doi: 10.1021/bi0349468. PubMed DOI

Bina D., Gardian Z., Herbstova M., Kotabova E., Konik P., Litvin R., Prasil O., Tichy J., Vacha F. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim. Biophys. Acta. 2014;1837:802–810. doi: 10.1016/j.bbabio.2014.01.011. PubMed DOI

Wei X., Su X., Cao P., Liu X., Chang W., Li M., Zhang X., Liu Z. Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI

Van Bezouwen L.S., Caffarri S., Kale R.S., Kouril R., Thunnissen A.W.H., Oostergetel G.T., Boekema E.J. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants. 2017;3:17080. doi: 10.1038/nplants.2017.80. PubMed DOI

Pi X., Tian L., Dai H.E., Qin X., Cheng L., Kuang T., Sui S.F., Shen J.R. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl. Acad. Sci. USA. 2018;115:4423–4428. doi: 10.1073/pnas.1722482115. PubMed DOI PMC

Burton-Smith R.N., Watanabe A., Tokutsu R., Song C., Murata K., Minagawa J. Structural determination of the large photosystem II-light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. J. Biol. Chem. 2019;294:15003–15013. doi: 10.1074/jbc.RA119.009341. PubMed DOI PMC

Qin X., Pi X., Wang W., Han G., Zhu L., Liu M., Cheng L., Shen J.R., Kuang T., Sui S.F. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat. Plants. 2019;5:263–272. doi: 10.1038/s41477-019-0379-y. PubMed DOI

Shen L., Huang Z., Chang S., Wang W., Wang J., Kuang T., Han G., Shen J.R., Zhang X. Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2019;116:21246–21255. doi: 10.1073/pnas.1912462116. PubMed DOI PMC

Sheng X., Watanabe A., Li A., Kim E., Song C., Murata K., Song D., Minagawa J., Liu Z. Structural insight into light harvesting for photosystem II in green algae. Nat. Plants. 2019;5:1320–1330. doi: 10.1038/s41477-019-0543-4. PubMed DOI

Suga M., Ozawa S.I., Yoshida-Motomura K., Akita F., Miyazaki N., Takahashi Y. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants. 2019;5:626–636. doi: 10.1038/s41477-019-0438-4. PubMed DOI

Wang W., Yu L.J., Xu C., Tomizaki T., Zhao S., Umena Y., Chen X., Qin X., Xin Y., Suga M., et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science. 2019;363 doi: 10.1126/science.aav0365. PubMed DOI

Gelzinis A., Augulis R., Buchel C., Robert B., Valkunas L. Confronting FCP structure with ultrafast spectroscopy data: Evidence for structural variations. Phys. Chem. Chem. Phys. PCCP. 2021;23:806–821. doi: 10.1039/D0CP05578F. PubMed DOI

Tichy J., Gardian Z., Bina D., Konik P., Litvin R., Herbstova M., Pain A., Vacha F. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim. Biophys. Acta. 2013;1827:723–729. doi: 10.1016/j.bbabio.2013.02.002. PubMed DOI

Llansola-Portoles M.J., Uragami C., Pascal A.A., Bina D., Litvin R., Robert B. Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim. Biophys. Acta. 2016;1857:1759–1765. doi: 10.1016/j.bbabio.2016.08.006. PubMed DOI

Crepin A., Cunill-Semanat E., Kuthanova Trskova E., Belgio E., Kana R. Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int. J. Mol. Sci. 2021;22:2969. doi: 10.3390/ijms22062969. PubMed DOI PMC

Kuthanova Trskova E., Belgio E., Yeates A.M., Sobotka R., Ruban A.V., Kana R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. J. Exp. Bot. 2018;69:4483–4493. doi: 10.1093/jxb/ery240. PubMed DOI PMC

Caffarri S., Kouril R., Kereiche S., Boekema E.J., Croce R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 2009;28:3052–3063. doi: 10.1038/emboj.2009.232. PubMed DOI PMC

Crepin A., Santabarbara S., Caffarri S. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis. J. Biol. Chem. 2016;291:19157–19171. doi: 10.1074/jbc.M116.738054. PubMed DOI PMC

Johnson M.P., Wientjes E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim. Biophys. Acta. Bioenerg. 2020;1861:148039. doi: 10.1016/j.bbabio.2019.06.011. PubMed DOI

Elson E.L. Fluorescence correlation spectroscopy: Past, present, future. Biophys. J. 2011;101:2855–2870. doi: 10.1016/j.bpj.2011.11.012. PubMed DOI PMC

David L., Prado M., Arteni A.A., Elmlund D.A., Blankenship R.E., Adir N. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly. Biochim. Biophys. Acta. 2014;1837:385–395. doi: 10.1016/j.bbabio.2013.12.014. PubMed DOI

Iwai M., Pack C.G., Takenaka Y., Sako Y., Nakano A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci. Rep. 2013;3:2833. doi: 10.1038/srep02833. PubMed DOI PMC

Kana R., Steinbach G., Sobotka R., Vamosi G., Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life. 2020;11:15. doi: 10.3390/life11010015. PubMed DOI PMC

Lepetit B., Volke D., Gilbert M., Wilhelm C., Goss R. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant. Physiol. 2010;154:1905–1920. doi: 10.1104/pp.110.166454. PubMed DOI PMC

Scarff C.A., Fuller M.J.G., Thompson R.F., Iadaza M.G. Variations on Negative Stain Electron Microscopy Methods: Tools for Tackling Challenging Systems. J. Vis. Exp. 2018;6:e57199. doi: 10.3791/57199. PubMed DOI PMC

Van Oort B., van Hoek A., Ruban A.V., van Amerongen H. Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett. 2007;581:3528–3532. doi: 10.1016/j.febslet.2007.06.070. PubMed DOI

Gregg W.W., Rousseaux C.S. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production. Front. Mar. Sci. 2016;3 doi: 10.3389/fmars.2016.00240. DOI

Neilson J.A., Durnford D.G. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res. 2010;106:57–71. doi: 10.1007/s11120-010-9576-2. PubMed DOI

Saccon F., Durchan M., Polivka T., Ruban A.V. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2020;19:1308–1318. doi: 10.1039/D0PP00174K. PubMed DOI

Kana R., Kotabova E., Kopecna J., Trskova E., Belgio E., Sobotka R., Ruban A.V. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Lett. 2016;590:1076–1085. doi: 10.1002/1873-3468.12130. PubMed DOI

Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 1944;2:164–168. doi: 10.1090/qam/10666. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace