High light acclimation of Chromera velia points to photoprotective NPQ
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28405863
DOI
10.1007/s11120-017-0385-8
PII: 10.1007/s11120-017-0385-8
Knihovny.cz E-zdroje
- Klíčová slova
- Chromera velia alga, High light acclimation, Nonphotochemical quenching, Photoinhibition, Uncoupling of antennas from Photosystem II.,
- MeSH
- aklimatizace účinky záření MeSH
- Alveolata cytologie fyziologie účinky záření MeSH
- chlorofyl a MeSH
- chlorofyl metabolismus MeSH
- fluorescence MeSH
- fotochemické procesy účinky záření MeSH
- fotosyntéza účinky záření MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- rozpustnost MeSH
- světlo * MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- světlosběrné proteinové komplexy MeSH
It has previously been shown that the long-term treatment of Arabidopsis thaliana with the chloroplast inhibitor lincomycin leads to photosynthetic membranes enriched in antennas, strongly reduced in photosystem II reaction centers (PSII) and with enhanced nonphotochemical quenching (NPQ) (Belgio et al. Biophys J 102:2761-2771, 2012). Here, a similar physiological response was found in the microalga Chromera velia grown under high light (HL). In comparison to cells acclimated to low light, HL cells displayed a severe re-organization of the photosynthetic membrane characterized by (1) a reduction of PSII but similar antenna content; (2) partial uncoupling of antennas from PSII; (3) enhanced NPQ. The decrease in the number of PSII represents a rather unusual acclimation response compared to other phototrophs, where a smaller PSII antenna size is more commonly found under high light. Despite the diminished PSII content, no net damage could be detected on the basis of the Photosynthesis versus irradiance curve and electron transport rates pointing at the excess capacity of PSII. We therefore concluded that the photoinhibition is minimized under high light by a lower PSII content and that cells are protected by NPQ in the antennas.
Zobrazit více v PubMed
Biochim Biophys Acta. 2013 Jun;1827(6):723-9 PubMed
Photosynth Res. 2015 Dec;126(2-3):261-74 PubMed
Biochim Biophys Acta. 2009 Jul;1787(7):929-38 PubMed
Biochim Biophys Acta. 1956 Aug;21(2):234-44 PubMed
Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2213-8 PubMed
Biochim Biophys Acta. 2009 Oct;1787(10):1170-8 PubMed
Plant Physiol. 1993 Nov;103(3):835-843 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):167-81 PubMed
Biochim Biophys Acta. 2013 Mar;1827(3):411-9 PubMed
J Exp Bot. 2005 Jan;56(411):435-47 PubMed
J Biol Chem. 2012 Feb 17;287(8):5833-47 PubMed
New Phytol. 2014 Oct;204(1):81-91 PubMed
Biochim Biophys Acta. 2013 Jan;1827(1):10-8 PubMed
J Proteome Res. 2011 Dec 2;10(12):5338-53 PubMed
J Photochem Photobiol B. 2015 Nov;152(Pt B):272-8 PubMed
Photosynth Res. 2002;72(3):271-84 PubMed
Plant Cell. 2012 May;24(5):1921-35 PubMed
Mol Plant. 2009 Mar;2(2):236-48 PubMed
Photosynth Res. 2014 Nov;122(2):159-69 PubMed
Curr Protein Pept Sci. 2014;15(4):351-62 PubMed
J Exp Bot. 2005 Jan;56(411):347-56 PubMed
Biochemistry. 2007 Aug 28;46(34):9813-22 PubMed
Photosynth Res. 1984 Jun;5(2):105-15 PubMed
Biochim Biophys Acta. 2017 Jan;1858(1):56-63 PubMed
Plant Physiol. 1980 Oct;66(4):592-5 PubMed
J Phys Chem B. 2013 Sep 26;117(38):11200-8 PubMed
Photosynth Res. 2011 May;108(1):25-32 PubMed
Science. 2001 Mar 16;291(5511):2138-41 PubMed
Biochim Biophys Acta. 1998 Oct 5;1367(1-3):88-106 PubMed
J Biol Chem. 2004 Nov 19;279(47):48620-9 PubMed
Plant Cell. 2011 Apr;23(4):1468-79 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):2-12 PubMed
J Biol Chem. 2006 May 26;281(21):14981-90 PubMed
Biophys J. 2012 Jun 20;102(12):2761-71 PubMed
PLoS One. 2012;7(10):e47036 PubMed
Biochim Biophys Acta. 2012 Jul;1817(7):977-82 PubMed
Indian J Biochem Biophys. 1988 Dec;25(6):631-5 PubMed
Ann Bot. 2010 Jul;106(1):1-16 PubMed
FEBS Lett. 2011 Jun 23;585(12):1941-5 PubMed
Biochemistry. 2003 Nov 11;42(44):13027-34 PubMed
Front Plant Sci. 2014 May 13;5:188 PubMed
J Plant Physiol. 2006 Mar;163(5):585-90 PubMed
Plant Mol Biol. 2006 Nov;62(4-5):779-93 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):734-43 PubMed
Biochim Biophys Acta. 2005 Jan 7;1706(1-2):68-80 PubMed
Biochemistry. 2005 Jun 14;44(23):8494-9 PubMed
Plant Cell Environ. 2015 Oct;38(10):2035-47 PubMed
EMBO J. 2009 Oct 7;28(19):3052-63 PubMed
Photosynth Res. 1990 Sep;25(3):147-50 PubMed
FEBS J. 2006 Oct;273(20):4616-30 PubMed
Plant Cell Physiol. 2016 Sep;57(9):1921-31 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359 PubMed
Plant Physiol. 2010 Dec;154(4):1905-20 PubMed
Protist. 2011 Jan;162(1):115-30 PubMed
Planta. 2004 Mar;218(5):793-802 PubMed
Biochemistry. 2006 Oct 31;45(43):13046-53 PubMed
Plant Physiol. 2007 Dec;145(4):1681-91 PubMed
J Biol Chem. 2007 Mar 23;282(12):8947-58 PubMed
FEBS Lett. 2016 Apr;590(8):1076-85 PubMed
Nature. 2008 Feb 21;451(7181):959-63 PubMed
Size and Fluorescence Properties of Algal Photosynthetic Antenna Proteins Estimated by Microscopy
Antenna proton sensitivity determines photosynthetic light harvesting strategy