On the origin of the slow M-T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses

. 2018 May ; 136 (2) : 183-198. [epub] 20171031

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29090427

Grantová podpora
CZ.1.07/2.3.00/20.0203 Ministerstvo Školství, Mládeže a Tělovýchovy
NPU I, LO 1416 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 29090427
DOI 10.1007/s11120-017-0458-8
PII: 10.1007/s11120-017-0458-8
Knihovny.cz E-zdroje

The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.

Zobrazit více v PubMed

Plant Cell. 2006 Apr;18(4):992-1007 PubMed

Nat Chem Biol. 2015 Apr;11(4):287-91 PubMed

Photosynth Res. 1996 May;48(1-2):117-26 PubMed

J Biol Chem. 2013 Aug 9;288(32):23529-42 PubMed

Biochim Biophys Acta. 2009 Oct;1787(10):1170-8 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):377-85 PubMed

Biophys J. 1968 Nov;8(11):1299-315 PubMed

Biochim Biophys Acta. 2009 Mar;1787(3):155-67 PubMed

Plant Cell Physiol. 2012 Mar;53(3):528-42 PubMed

Photosynth Res. 2012 Sep;113(1-3):15-61 PubMed

Plant Mol Biol. 1998 Jun;37(3):577-80 PubMed

Photosynth Res. 2009 Mar;99(3):205-16 PubMed

Photosynth Res. 1990 May;24(2):175-81 PubMed

J Plant Physiol. 2015 Apr 1;177:128-138 PubMed

J Microsc. 2007 May;226(Pt 2):90-120 PubMed

PLoS One. 2010 Jun 08;5(6):e11000 PubMed

Photosynth Res. 2015 Aug;125(1-2):219-31 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1237-47 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):236-57 PubMed

Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12075-80 PubMed

Photosynth Res. 2014 May;120(1-2):43-58 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1418-27 PubMed

Photosynth Res. 2009 Aug-Sep;101(2-3):205-16 PubMed

Int Rev Cell Mol Biol. 2013;300:243-303 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):750-6 PubMed

Photosynth Res. 2010 Jan;103(1):7-17 PubMed

FEBS Lett. 2004 Sep 10;574(1-3):85-8 PubMed

Microsc Microanal. 2016 Apr;22(2):258-63 PubMed

Photosynth Res. 2016 Dec;130(1-3):193-213 PubMed

Biochim Biophys Acta. 2010 Apr;1797(4):466-75 PubMed

Biochim Biophys Acta. 2011 Aug;1807(8):897-905 PubMed

Photosynth Res. 2013 Nov;117(1-3):321-37 PubMed

Photosynth Res. 2016 Dec;130(1-3):237-249 PubMed

Biochim Biophys Acta. 2007 Mar;1767(3):233-43 PubMed

Photosynth Res. 2016 Jun;128(3):271-85 PubMed

Photosynth Res. 2006 Oct;90(1):29-43 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):766-72 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):258-70 PubMed

Biochim Biophys Acta. 2000 Apr 21;1457(3):229-42 PubMed

Bacteriol Rev. 1971 Jun;35(2):171-205 PubMed

J Biol Chem. 2009 Oct 9;284(41):27875-83 PubMed

Plant Physiol. 2002 Nov;130(3):1443-53 PubMed

Plant Physiol. 2001 Apr;125(4):1558-66 PubMed

Plant Physiol. 2014 Jun 19;165(4):1618-1631 PubMed

Photosynth Res. 2007 Nov-Dec;94(2-3):275-90 PubMed

Biochim Biophys Acta. 2012 Feb;1817(2):319-27 PubMed

Biochemistry. 1990 Sep 4;29(35):8100-6 PubMed

Plant Cell. 2005 Apr;17(4):1217-32 PubMed

Plant Physiol. 2005 Jan;137(1):263-73 PubMed

Plant Cell Environ. 2012 Feb;35(2):347-59 PubMed

Photosynth Res. 2010 Nov;106(1-2):33-46 PubMed

Photosynth Res. 2018 Apr;136(1):63-82 PubMed

Life (Basel). 2015 Mar 09;5(1):716-43 PubMed

J Bacteriol. 2011 Jan;193(1):292-5 PubMed

Plant Physiol Biochem. 2014 Aug;81:184-9 PubMed

Front Plant Sci. 2016 Dec 16;7:1849 PubMed

Photosynth Res. 2018 Mar;135(1-3):263-274 PubMed

Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130221 PubMed

FEBS Lett. 2002 May 22;519(1-3):82-6 PubMed

Plant Physiol. 2014 Feb;164(2):805-18 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...