On the origin of the slow M-T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.07/2.3.00/20.0203
Ministerstvo Školství, Mládeže a Tělovýchovy
NPU I, LO 1416
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29090427
DOI
10.1007/s11120-017-0458-8
PII: 10.1007/s11120-017-0458-8
Knihovny.cz E-zdroje
- Klíčová slova
- Fluorescence quenching, Interplay of regulatory processes, Kautsky effect, Photoprotection, Synechocystis, The M–T phase,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chlorofyl a MeSH
- chlorofyl chemie genetika metabolismus MeSH
- diuron chemie MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fykobilizomy genetika metabolismus MeSH
- kyanid draselný chemie MeSH
- luminiscenční měření MeSH
- světlo MeSH
- Synechocystis chemie genetika metabolismus MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chlorofyl a MeSH
- chlorofyl MeSH
- diuron MeSH
- fykobilizomy MeSH
- kyanid draselný MeSH
- orange carotenoid protein, Synechocystis MeSH Prohlížeč
The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.
Centre for Life Sciences Central University of Jharkand Ranchi 835205 Jharkand India
Zobrazit více v PubMed
Plant Cell. 2006 Apr;18(4):992-1007 PubMed
Nat Chem Biol. 2015 Apr;11(4):287-91 PubMed
Photosynth Res. 1996 May;48(1-2):117-26 PubMed
J Biol Chem. 2013 Aug 9;288(32):23529-42 PubMed
Biochim Biophys Acta. 2009 Oct;1787(10):1170-8 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):377-85 PubMed
Biophys J. 1968 Nov;8(11):1299-315 PubMed
Biochim Biophys Acta. 2009 Mar;1787(3):155-67 PubMed
Plant Cell Physiol. 2012 Mar;53(3):528-42 PubMed
Photosynth Res. 2012 Sep;113(1-3):15-61 PubMed
Plant Mol Biol. 1998 Jun;37(3):577-80 PubMed
Photosynth Res. 2009 Mar;99(3):205-16 PubMed
Photosynth Res. 1990 May;24(2):175-81 PubMed
J Plant Physiol. 2015 Apr 1;177:128-138 PubMed
J Microsc. 2007 May;226(Pt 2):90-120 PubMed
PLoS One. 2010 Jun 08;5(6):e11000 PubMed
Photosynth Res. 2015 Aug;125(1-2):219-31 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1237-47 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):236-57 PubMed
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12075-80 PubMed
Photosynth Res. 2014 May;120(1-2):43-58 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1418-27 PubMed
Photosynth Res. 2009 Aug-Sep;101(2-3):205-16 PubMed
Int Rev Cell Mol Biol. 2013;300:243-303 PubMed
Biochim Biophys Acta. 2007 Jun;1767(6):750-6 PubMed
Photosynth Res. 2010 Jan;103(1):7-17 PubMed
FEBS Lett. 2004 Sep 10;574(1-3):85-8 PubMed
Microsc Microanal. 2016 Apr;22(2):258-63 PubMed
Photosynth Res. 2016 Dec;130(1-3):193-213 PubMed
Biochim Biophys Acta. 2010 Apr;1797(4):466-75 PubMed
Biochim Biophys Acta. 2011 Aug;1807(8):897-905 PubMed
Photosynth Res. 2013 Nov;117(1-3):321-37 PubMed
Photosynth Res. 2016 Dec;130(1-3):237-249 PubMed
Biochim Biophys Acta. 2007 Mar;1767(3):233-43 PubMed
Photosynth Res. 2016 Jun;128(3):271-85 PubMed
Photosynth Res. 2006 Oct;90(1):29-43 PubMed
Biochim Biophys Acta. 2007 Jun;1767(6):766-72 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):258-70 PubMed
Biochim Biophys Acta. 2000 Apr 21;1457(3):229-42 PubMed
Bacteriol Rev. 1971 Jun;35(2):171-205 PubMed
J Biol Chem. 2009 Oct 9;284(41):27875-83 PubMed
Plant Physiol. 2002 Nov;130(3):1443-53 PubMed
Plant Physiol. 2001 Apr;125(4):1558-66 PubMed
Plant Physiol. 2014 Jun 19;165(4):1618-1631 PubMed
Photosynth Res. 2007 Nov-Dec;94(2-3):275-90 PubMed
Biochim Biophys Acta. 2012 Feb;1817(2):319-27 PubMed
Biochemistry. 1990 Sep 4;29(35):8100-6 PubMed
Plant Cell. 2005 Apr;17(4):1217-32 PubMed
Plant Physiol. 2005 Jan;137(1):263-73 PubMed
Plant Cell Environ. 2012 Feb;35(2):347-59 PubMed
Photosynth Res. 2010 Nov;106(1-2):33-46 PubMed
Photosynth Res. 2018 Apr;136(1):63-82 PubMed
Life (Basel). 2015 Mar 09;5(1):716-43 PubMed
J Bacteriol. 2011 Jan;193(1):292-5 PubMed
Plant Physiol Biochem. 2014 Aug;81:184-9 PubMed
Front Plant Sci. 2016 Dec 16;7:1849 PubMed
Photosynth Res. 2018 Mar;135(1-3):263-274 PubMed
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130221 PubMed
FEBS Lett. 2002 May 22;519(1-3):82-6 PubMed
Plant Physiol. 2014 Feb;164(2):805-18 PubMed
A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803