A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
267333
European Research Council - International
PubMed
27016082
PubMed Central
PMC5054063
DOI
10.1007/s11120-016-0248-8
PII: 10.1007/s11120-016-0248-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cyanobacteria, Singular value decomposition, Spectrally resolved fluorometry, Time-resolved spectroscopy,
- MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fotosystém I - proteinový komplex metabolismus účinky záření MeSH
- fotosystém II - proteinový komplex metabolismus účinky záření MeSH
- světlo MeSH
- Synechocystis účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
Zobrazit více v PubMed
Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev. 1998;62(3):667–683. PubMed PMC
Cho F, Govindjee Low-temperature (4–77 °K) spectroscopy of anacystis; temperature dependence of energy transfer efficiency. Biochim Biophys Acta. 1970;216(1):151–161. PubMed
Chukhutsina V, Bersanini L, Aro E-M, van Amerongen H. Cyanobacterial Light-harvesting phycobilisomes uncouple from photosystem i during dark-to-light transitions. Sci Rep. 2015;5:14193. PubMed PMC
Daddy S, Zhan J, Jantaro S, He C, He Q, Wang Q. A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803. Sci Rep. 2015;5:9480. PubMed PMC
Demmig-Adams B, Garab G, Adams W, III, Govindjee . Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration including bioenergy and related processes. Dordrecht: Springer; 2014.
Glazer AN, Bryant DA. Allophycocyanin B (λmax 671, 618 nm) Arch Microbiol. 1975;104(1):15–22. PubMed
Golub GH, Van Loan CF. Matrix computations. Baltimore: The Johns Hopkins University Press; 1996.
Govindjee Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol. 1995;22:131–160.
Govindjee, Shevela D. Adventures with cyanobacteria: a personal perspective. Front Plant Sci. 2011 PubMed PMC
Gwizdala M, Wilson A, Kirilovsky D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell. 2011;23(7):2631–2643. PubMed PMC
He Q, Dolganov N, Björkman O, Grossman AR. The high light-inducible polypeptides in Synechocystis PCC6803: expression and function in high light. J Biol Chem. 2001;276(1):306–314. PubMed
Jallet D, Gwizdala M, Kirilovsky D. ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochim Biophys Acta. 2012;1817(8):1418–1427. PubMed
Joshua S, Mullineaux CW. Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol. 2004;135(4):2112–2119. PubMed PMC
Kaňa R, Prášil O, Komárek O, Papageorgiou GC, Govindjee Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942) Biochim Biophys Acta. 2009;1787(10):1170–1178. PubMed
Kaňa R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Govindjee, Prášil O. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim Biophys Acta. 2012;8:1237–1247. PubMed
Kautsky H, Hirsch A. Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften. 1931;19(48):964.
Kirilovsky D, Kaňa R, Prášil O. Mechanisms modulating energy arriving at reaction centers in cyanobacteria. In: Demmig-Adams B, Garab G, Adams W III, Govindjee, editors. Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration. Dordrecht: Springer; 2014. pp. 471–502.
Kodru S, Malavath T, Devadasu E, Nellaepalli S, Stirbet A, Subramanyam R, Govindjee The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynth Res. 2015;125(1–2):219–231. PubMed
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins—protectors of chlorophyll–protein synthesis and assembly. Biochim Biophys Acta. 2016 PubMed
Komenda J, Reisinger V, Müller BC, Dobáková M, Granvogl B, Eichacker LA. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem. 2004;279(47):48620–48629. PubMed
Komura M, Itoh S. Fluorescence measurement by a streak camera in a single-photon-counting mode. Photosynth Res. 2009;101:119–133. PubMed
Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol. 1991;42:313–349.
Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR. Kinetic and spectral resolution of multiple nonphotochemical quenching components in arabidopsis leaves. Plant Physiol. 2010;152(3):1611–1624. PubMed PMC
Lazár D, Jablonský J. On the approaches applied in formulation of a kinetic model of photosystem II: different approaches lead to different simulations of the chlorophyll a fluorescence transients. J Theor Biol. 2009;257(2):260–269. PubMed
Liu L-N. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. Biochim Biophys Acta. 2015;1857(3):256–265. PubMed PMC
Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science. 2013;342(6162):1104–1107. PubMed PMC
McConnell MD, Koop R, Vasil’ev S, Bruce D. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol. 2002;130(3):1201–1212. PubMed PMC
Melis A. Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Philos Trans R Soc Lond B. 1989;323(1216):397–409.
Moal G. Lagoutte B (2012) Photo-induced electron transfer from photosystem I to NADP+: characterization and tentative simulation of the in vivo environment. Biochim Biophys Acta. 1817;9:1635–1645. PubMed
Mullineaux CW. Electron transport and light-harvesting switches in cyanobacteria. Front Plant Sci. 2014;5:7. PubMed PMC
Mullineaux CW, Allen JF. The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett. 1986;205(1):155–160.
Mullineaux CW, Allen JF. State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between photosystems I and II. Photosynth Res. 1990;23(3):297–311. PubMed
Mullineaux CW, Emlyn-Jones D. State transitions: an example of acclimation to low-light stress. J Exp Bot. 2005;56(411):389–393. PubMed
Nedbal L, Trtílek M, Červený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng. 2008;100(5):902–910. PubMed
Neubauer C, Schreiber U. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Zeitschrift für Naturforschung C. 1987;42(11–12):1246–1254.
Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 2001;20(20):5587–5594. PubMed PMC
Papageorgiou GC. The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence. J Sci Ind Res. 1996;55(8–9):596–617.
Papageorgiou GC, Govindjee Photosystem II fluorescence: slow changes—scaling from the past. J Photochem Photobiol, B. 2011;104(1–2):258–270. PubMed
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res. 2007;94(2–3):275–290. PubMed
Schansker G, Tóth SZ, Strasser RJ. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta. 2006;1757(7):787–797. PubMed
Schreiber U, Neubauer C. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Zeitschrift für Naturforschung C. 1987;42(11–12):1255–1264.
Shen G, Boussiba S, Vermaas WFJ. Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. Plant Cell. 1993;5(12):1853–1863. PubMed PMC
Shevela D, Pishchalnikov RY, Eichacker LA, Govindjee . Oxygenic photosynthesis in cyanobacteria. In: Srivastava AK, Rai AN, Neilan BA, editors. Stress biology of cyanobacteria. Moleular mechanisms to cellular responses. Boca Raton: CRC Press; 2013.
Staleva H, Komenda J, Shukla MK, Šlouf V, Kaňa R, Polívka T, Sobotka R. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol. 2015;11(4):287–291. PubMed
Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol Rev. 1971;35(2):171–205. PubMed PMC
Steinbach G, Schubert F, Kaňa R. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells. J Photochem Photobiol, B. 2015;152:395–399. PubMed
Stirbet A, Govindjee On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol, B. 2011;104:236–257. PubMed
Stirbet A, Govindjee Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res. 2012;113:15–61. PubMed
Stirbet A, Riznichenko GY, Rubin AB, Govindjee Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochem (Mosc) 2014;79(4):291–323. PubMed
Tian L, van Stokkum IHM, Koehorst RBM, Jongerius A, Kirilovsky D, van Amerongen H. Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc. 2011;133(45):18304–18311. PubMed
Tian L, Gwizdala M, van Stokkum Ivo HM, Koehorst Rob BM, Kirilovsky D, van Amerongen H. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J. 2012;102(7):1692–1700. PubMed PMC
van Alphen P, Hellingwerf KJ. Sustained circadian rhythms in continuous light in Synechocystis sp. PCC6803 growing in a well-controlled photobioreactor. PLoS ONE. 2015;10(6):e0127715. PubMed PMC
Vernotte C, Astier C, Olive J. State 1-state 2 adaptation in the cyanobacteria Synechocystis PCC 6714 wild type and Synechocystis PCC 6803 wild type and phycocyanin-less mutant. Photosynth Res. 1990;26(3):203–212. PubMed
Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul J-M, Kerfeld CA, van Grondelle R, Robert B, Kennis JTM, Kirilovsky D. A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA. 2008;105(33):12075–12080. PubMed PMC
Wilson A, Gwizdala M, Mezzetti A, Alexandre M, Kerfeld CA, Kirilovsky D. The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell. 2012;24(5):1972–1983. PubMed PMC