Singular value decomposition
Dotaz
Zobrazit nápovědu
OBJECTIVE: To test the hypothesis that in recipients of primary prophylactic implantable cardioverter-defibrillators (ICDs), the non-planarity of ECG vector loops predicts (a) deaths despite ICD protection and (b) appropriate ICD shocks. METHODS: Digital pre-implant ECGs were collected in 1948 ICD recipients: 21.4% females, median age 65 years, 61.5% ischaemic heart disease (IHD). QRS and T wave three-dimensional loops were constructed using singular value decomposition that allowed to measure the vector loop planarity. The non-planarity, that is, the twist of the three-dimensional loops out of a single plane, was related to all-cause mortality (n=294; 15.3% females; 68.7% IHD) and appropriate ICD shocks (n=162; 10.5% females; 87.7% IHD) during 5-year follow-up after device implantation. Using multivariable Cox regression, the predictive power of QRS and T wave non-planarity was compared with that of age, heart rate, left ventricular ejection fraction, QRS duration, spatial QRS-T angle, QTc interval and T-peak to T-end interval. RESULTS: QRS non-planarity was significantly (p<0.001) associated with follow-up deaths despite ICD protection with HR of 1.339 (95% CI 1.165 to 1.540) but was only univariably associated with appropriate ICD shocks. Non-planarity of the T wave loop was the only ECG-derived index significantly (p<0.001) associated with appropriate ICD shocks with multivariable Cox regression HR of 1.364 (1.180 to 1.576) but was not associated with follow-up mortality. CONCLUSIONS: The analysed data suggest that QRS and T wave non-planarity might offer distinction between patients who are at greater risk of death despite ICD protection and those who are likely to use the defibrillator protection.
- MeSH
- defibrilátory implantabilní * škodlivé účinky MeSH
- elektrokardiografie metody MeSH
- funkce levé komory srdeční MeSH
- ischemická choroba srdeční * komplikace MeSH
- lidé MeSH
- náhlá srdeční smrt etiologie prevence a kontrola MeSH
- nemoci koronárních tepen * komplikace MeSH
- rizikové faktory MeSH
- senioři MeSH
- srdeční arytmie diagnóza terapie etiologie MeSH
- tepový objem MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Water removal is one of the computational bottlenecks in the processing of high-resolution MRSI data. The purpose of this work is to propose an approach to reduce the computing time required for water removal in large MRS data. METHODS: In this work, we describe a singular value decomposition-based approach that uses the partial position-time separability and the time-domain linear predictability of MRSI data to reduce the computational time required for water removal. Our approach arranges MRS signals in a Casorati matrix form, applies low-rank approximations utilizing singular value decomposition, removes residual water from the most prominent left-singular vectors, and finally reconstructs the water-free matrix using the processed left-singular vectors. RESULTS: We have demonstrated the effectiveness of our proposed algorithm for water removal using both simulated and in vivo data. The proposed algorithm encompasses a pip-installable tool ( https://pypi.org/project/CSVD/), available on GitHub ( https://github.com/amirshamaei/CSVD), empowering researchers to use it in future studies. Additionally, to further promote transparency and reproducibility, we provide comprehensive code for result replication. CONCLUSIONS: The findings of this study suggest that the proposed method is a promising alternative to existing water removal methods due to its low processing time and good performance in removing water signals.
Individual differences in the ability to process language have long been discussed. Much of the neural basis of these, however, is yet unknown. Here we investigated the relationship between long-range white matter connectivity of the brain, as revealed by diffusion tractography, and the ability to process syntactically complex sentences in the participants' native language as well as the improvement thereof by multiday training. We identified specific network motifs by singular value decomposition that indeed related white matter structural connectivity to individual language processing performance. First, for two such motifs, one in the left and one in the right hemisphere, their individual prevalence significantly predicted the individual language performance, suggesting an anatomical predisposition for the individual ability to process syntactically complex sentences. Both motifs comprise a number of cortical regions, but seem to be dominated by areas known for the involvement in working memory rather than the classical language network itself. Second, we identified another left hemispheric network motif, whose change of prevalence over the training period significantly correlated with the individual change in performance, thus reflecting training induced white matter plasticity. This motif comprises diverse cortical areas including regions known for their involvement in language processing, working memory and motor functions. The present findings suggest that individual differences in language processing and learning can be explained, in part, by individual differences in the brain's white matter structure. Brain structure may be a crucial factor to be considered when discussing variations in human cognitive performance, more generally.
INTRODUCTION: Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS. METHODS: We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction. RESULTS: We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization. CONCLUSION: We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
- Publikační typ
- časopisecké články MeSH
Three-dimensional angle between the QRS complex and T wave vectors is a known powerful cardiovascular risk predictor. Nevertheless, several physiological properties of the angle are unknown or poorly understood. These include, among others, intra-subject profiles and stability of the angle relationship to heart rate, characteristics of angle/heart-rate hysteresis, and the changes of these characteristics with different modes of QRS-T angle calculation. These characteristics were investigated in long-term 12-lead Holter recordings of 523 healthy volunteers (259 females). Three different algorithmic methods for the angle computation were based on maximal vector magnitude of QRS and T wave loops, areas under the QRS complex and T wave curvatures in orthogonal leads, and weighted integration of all QRS and T wave vectors moving around the respective 3-dimensional loops. These methods were applied to orthogonal leads derived either by a uniform conversion matrix or by singular value decomposition (SVD) of the original 12-lead ECG, giving 6 possible ways of expressing the angle. Heart rate hysteresis was assessed using the exponential decay models. All these methods were used to measure the angle in 659,313 representative waveforms of individual 10-s ECG samples and in 7,350,733 individual beats contained in the same 10-s samples. With all measurement methods, the measured angles fitted second-degree polynomial regressions to the underlying heart rate. Independent of the measurement method, the angles were found significantly narrower in females (p < 0.00001) with the differences to males between 10o and 20o, suggesting that in future risk-assessment studies, different angle dichotomies are needed for both sexes. The integrative method combined with SVD leads showed the highest intra-subject reproducibility (p < 0.00001). No reproducible delay between heart rate changes and QRS-T angle changes was found. This was interpreted as a suggestion that the measurement of QRS-T angle might offer direct assessment of cardiac autonomic responsiveness at the ventricular level.
- Publikační typ
- časopisecké články MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
Nealkoholická steatóza jater (NAFLD) je nejčastější chronické onemocnění jater v západních civilizacích (prevalence ~30%). Onemocnění často přechází do steatohepatitidy (NASH) a v některých případech vede k cirhóze a hepatocelulárnímu karcinomu. Steatóza je výsledkem porušení rovnováhy mezi přijatými, katabolizovanými nebo odstraňovanými triglyceridy v játrech. Naše studie je založena na 1H MR lokalizované spektroskopii a dvou MRI technikách, které budou testovány a použity pro porovnání obsahu tuku v játrech: metodou “singular value decomposition matrix pencil method” a standardní modifikací multi echo sekvence. Abychom charakterizovali dynamiku akumulace tuků v játrech, budou za pečlivě kontrolovaných metabolických podmínek provedeny experimenty po požití nadměrného množství tuku. V těch využijeme toho, že dostatečně vysoká tuková zátěž se projeví detekovatelným přírůstkem množství jaterního tuku. Změny obsahu a prostorového rozložení tuku v játrech budou měřeny různými in vivo MR metodami.; Non-alcoholic fatty acid liver disease (NAFLD, steatosis) is the most frequent chronic liver disease in western countries (prevalence ~30%). The disease often progresses to steatohepatitis (NASH) and further even to cirrhosis and hepatocellular carcinoma. Steatosis results from an imbalance between the acquired, catabolized or removed triglycerides in the liver. Our study is based on 1H MR single voxel spectroscopy and two MRI techniques which will be tested and used for the comparison of fat content in the liver: a singular value decomposition matrix pencil method and standard modification of multi-echo sequence. To understand the dynamics of lipid accumulation in the liver, experiments using overload of dietary fat will be carried out under well controlled metabolic conditions. These experiments take advantage of the fact that sufficiently high load of fat results in detectable increment of hepatic fat. Changes in content and spatial distribution of hepatic fat will be measured in vivo by different MR techniques.
- MeSH
- játra metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- magnetická rezonanční tomografie MeSH
- monitorování fyziologických funkcí MeSH
- nealkoholová steatóza jater diagnostické zobrazování MeSH
- triglyceridy metabolismus MeSH
- tuková tkáň metabolismus MeSH
- Check Tag
- lidé MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- hepatologie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
The normal physiologic range of QRS complex duration spans between 80 and 125 ms with known differences between females and males which cannot be explained by the anatomical variations of heart sizes. To investigate the reasons for the sex differences as well as for the wide range of normal values, a technology is proposed based on the singular value decomposition and on the separation of different orthogonal components of the QRS complex. This allows classification of the proportions of different components representing the 3-dimensional representation of the electrocardiographic signal as well as classification of components that go beyond the 3-dimensional representation and that correspond to the degree of intricate convolutions of the depolarisation sequence. The technology was applied to 382,019 individual 10-s ECG samples recorded in 639 healthy subjects (311 females and 328 males) aged 33.8 ± 9.4 years. The analyses showed that QRS duration was mainly influenced by the proportions of the first two orthogonal components of the QRS complex. The first component demonstrated statistically significantly larger proportion of the total QRS power (expressed by the absolute area of the complex in all independent ECG leads) in females than in males (64.2 ± 11.6% vs 59.7 ± 11.9%, p < 0.00001-measured at resting heart rate of 60 beats per minute) while the second component demonstrated larger proportion of the QRS power in males compared to females (33.1 ± 11.9% vs 29.6 ± 11.4%, p < 0.001). The analysis also showed that the components attributable to localised depolarisation sequence abnormalities were significantly larger in males compared to females (2.85 ± 1.08% vs 2.42 ± 0.87%, p < 0.00001). In addition to the demonstration of the technology, the study concludes that the detailed convolution of the depolarisation waveform is individual, and that smoother and less intricate depolarisation propagation is the mechanism likely responsible for shorter QRS duration in females.
- MeSH
- algoritmy MeSH
- analýza dat MeSH
- biologická variabilita populace MeSH
- dospělí MeSH
- elektrofyziologické jevy * účinky léků MeSH
- elektrokardiografie * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- sexuální faktory MeSH
- srdce účinky léků fyziologie MeSH
- výpočetní biologie metody MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper reports on the structure of the autonomous station for monitoring artificial gamma activity in surface water bodies for the purposes of emergency preparedness of the Czech Republic. A simple design based on the NaI(Tl) submersible detector powered by a combined solar and wind source has been employed. Data transfer is provided by a satellite connection. The detection capabilities of the device have been tested for various unfavourable conditions, and the detection limits have been lowered by using the noise adjustment singular value decomposition (NASVD) method. The detection capabilities of the device fulfil the legal requirements for emergency monitoring, and are almost equal to the detection capabilities of other available devices with a more complicated and less versatile structure.
- MeSH
- monitorování radiace přístrojové vybavení MeSH
- radioaktivní látky znečišťující vodu analýza MeSH
- radioizotopy cesia analýza MeSH
- radioizotopy jodu analýza MeSH
- spektrometrie gama přístrojové vybavení MeSH
- záření gama MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
... One Vector Space to Rule Them All 157 -- 10.8 Geometry of Vector Spaces 159 -- 10.9 Application: Singular ... ... Value Decomposition 164 -- 10.10 Cultural Review 179 -- 10.11 Exercises 179 -- 10.12 Chapter Notes 181 ...
First edition iii, 365 stran : ilustrace ; 25 cm
Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.
- MeSH
- genotyp MeSH
- genotypizační techniky metody MeSH
- jednonukleotidový polymorfismus MeSH
- modely genetické * MeSH
- populační genetika MeSH
- selekce (genetika) * MeSH
- smrk genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Britská Kolumbie MeSH