-
Je něco špatně v tomto záznamu ?
Regularization techniques in realistic Laplacian computation
R Bortel, P Sovka
Jazyk angličtina Země Spojené státy americké
- MeSH
- algoritmy MeSH
- diagnóza počítačová metody MeSH
- elektroencefalografie metody MeSH
- financování organizované MeSH
- lidé MeSH
- mapování mozku metody MeSH
- modely neurologické MeSH
- mozek fyziologie MeSH
- počítačová simulace MeSH
- Check Tag
- lidé MeSH
This paper explores regularization options for the ill-posed spline coefficient equations in the realistic Laplacian computation. We investigate the use of the Tikhonov regularization, truncated singular value decomposition, and the so-called lambda-correction with the regularization parameter chosen by the L-curve, generalized cross-validation, quasi-optimality, and the discrepancy principle criteria. The provided range of regularization techniques is much wider than in the previous works. The improvement of the realistic Laplacian is investigated by simulations on the three-shell spherical head model. The conclusion is that the best performance is provided by the combination of the Tikhonov regularization and the generalized cross-validation criterion-a combination that has never been suggested for this task before.
- 000
- 02086naa 2200313 a 4500
- 001
- bmc10012283
- 003
- CZ-PrNML
- 005
- 20121105124122.0
- 008
- 100521s2007 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bortel, Radoslav. $7 jo2017971431
- 245 10
- $a Regularization techniques in realistic Laplacian computation / $c R Bortel, P Sovka
- 314 __
- $a Department of Circuit Theory, Technicka 2, Faculty of Electrical Engineering, Czech Technical University, Prague 166 27, Czech Republic
- 520 9_
- $a This paper explores regularization options for the ill-posed spline coefficient equations in the realistic Laplacian computation. We investigate the use of the Tikhonov regularization, truncated singular value decomposition, and the so-called lambda-correction with the regularization parameter chosen by the L-curve, generalized cross-validation, quasi-optimality, and the discrepancy principle criteria. The provided range of regularization techniques is much wider than in the previous works. The improvement of the realistic Laplacian is investigated by simulations on the three-shell spherical head model. The conclusion is that the best performance is provided by the combination of the Tikhonov regularization and the generalized cross-validation criterion-a combination that has never been suggested for this task before.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a mapování mozku $x metody $7 D001931
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a financování organizované $7 D005381
- 700 1_
- $a Sovka, Pavel, $d 1957- $7 ntka174045
- 773 0_
- $t IEEE Transactions on Biomedical Engineering $w MED00002172 $g Roč. 54, č. 11 Nov (2007), s. 1993-1999 $x 0018-9294
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20100529082533 $b ABA008
- 991 __
- $a 20121105124130 $b ABA008
- 999 __
- $a ok $b bmc $g 726140 $s 589293
- BAS __
- $a 3
- BMC __
- $a 2007 $b 54 $c 11 Nov $d 1993-1999 $i 0018-9294 $m IEEE transactions on biomedical engineering $n IEEE Trans Biomed Eng $x MED00002172
- LZP __
- $a 2010-B2/vtme