The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.
- MeSH
- artefakty * MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku * metody MeSH
- mladý dospělý MeSH
- mozek * diagnostické zobrazování fyziologie MeSH
- počítačové zpracování obrazu * metody MeSH
- poměr signál - šum MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Diagnostic cortical stimulation (CS) in intracranial electroencephalography (iEEG) is an established epilepsy presurgical assessment tool to delineate relevant brain functions and elicit habitual epileptic seizures. Currently, no consensus exists as to whether CS should be routinely performed in pediatric patients. A significant challenge is their limited ability to cooperate during the procedure or to describe non-observable seizure semiology features. Our goal was to identify the spectrum of CS practices in Canada, for both eloquent cortex mapping and seizure stimulation. METHODS: An online survey, answered by all 8 Canadian pediatric epilepsy centers, enquired about implantation, stimulation methods, and use of standardized protocols. A systematic literature review extracted detailed stimulation parameters. RESULTS: Most of the institutions (n = 7/8) reported performing CS during presurgical evaluation. Four institutions indicated they perform stimulation in all implanted patients for the purpose of eloquent cortex mapping and seizure stimulation. The majority of physicians had their individual approach to CS. A largely variable approach to CS, mainly in the choice of stimulation parameters (i.e., train and pulse duration), was observed, with the highest variance concerning the purpose of seizure stimulation. The literature review highlighted an overall small sample size and minimal number of publications. Even though there is a rising trend towards stereotactic iEEG implantation, more data were available on subdural EEGs. CONCLUSION: This study shows individual and sparsely validated approach to CS in pediatric epilepsy. The literature review underscores the urgent need to harmonize pediatric intracranial EEG practices. More multicenter studies are needed to identify safe stimulation thresholds and allow implementation of evidence-based guidelines.
- MeSH
- dítě MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie metody MeSH
- epilepsie chirurgie patofyziologie diagnóza MeSH
- lidé MeSH
- mapování mozku * metody MeSH
- mozková kůra patofyziologie MeSH
- pediatrie metody MeSH
- průzkumy a dotazníky MeSH
- záchvaty * patofyziologie diagnóza MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Geografické názvy
- Kanada MeSH
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
- MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- modely neurologické * MeSH
- mozek * fyziologie diagnostické zobrazování MeSH
- nervová síť fyziologie MeSH
- odpočinek * fyziologie MeSH
- počítačová simulace MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Besides being responsible for olfaction and air intake, the nose contains abundant vasculature and autonomic nervous system innervations, and it is a cerebrospinal fluid clearance site. Therefore, the nose is an attractive target for functional MRI (fMRI). Yet, nose fMRI has not been possible so far due to signal losses originating from nasal air-tissue interfaces. Here, we demonstrated feasibility of nose fMRI by using novel ultrashort/zero echo time (TE) MRI. Results obtained in the resting-state from 13 healthy participants at 7T and in 5 awake mice at 9.4T revealed a highly reproducible resting-state nose functional network that likely reflects autonomic nervous system activity. Another network observed in humans involves the nose, major brain vessels and CSF spaces, presenting a temporal dynamic that correlates with heart rate and breathing rate. These resting-state nose functional signals should help elucidate peripheral and central nervous system integrations.
- MeSH
- autonomní nervový systém fyziologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- mozek fyziologie diagnostické zobrazování MeSH
- myši MeSH
- nos * fyziologie diagnostické zobrazování MeSH
- odpočinek fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish between currently depressed patients with BD type I (BD I) and those with MDD. METHODOLOGY: In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, MDD patients and controls. RESULTS: FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex (LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC and ROCC and greater FC between the RFP and the LI/MTG. CONCLUSIONS: Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC between the RFP and the default mode network, corresponding to sustained self-focus and rumination.
- MeSH
- bipolární porucha * patofyziologie diagnostické zobrazování MeSH
- depresivní porucha unipolární * patofyziologie diagnostické zobrazování MeSH
- dospělí MeSH
- konektom metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mozek patofyziologie diagnostické zobrazování MeSH
- multivariační analýza MeSH
- nervová síť diagnostické zobrazování patofyziologie MeSH
- nervové dráhy patofyziologie diagnostické zobrazování MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for analyzing the central and peripheral nervous system. TMS could be a powerful therapeutic technique for neurological disorders. TMS has also shown potential in treating various neurophysiological complications, such as depression, anxiety, and obsessive-compulsive disorders, without pain and analgesics. Despite advancements in diagnosis and treatment, there has been an increase in the prevalence of brain cancer globally. For surgical planning, mapping brain tumors has proven challenging, particularly those localized in expressive regions. Preoperative brain tumor mapping may lower the possibility of postoperative morbidity in surrounding areas. A navigated TMS (nTMS) uses magnetic resonance imaging (MRI) to enable precise mapping during navigated brain stimulation. The resulting magnetic impulses can be precisely applied to the target spot in the cortical region by employing nTMS. This review focuses on nTMS for preoperative planning for brain cancer. This study reviews several studies on TMS and its subtypes in treating cancer and surgical planning. nTMS gives wider and improved dimensions of preoperative planning of the motor-eloquent areas in brain tumor patients. nTMS also predicts postoperative neurological deficits, which might be helpful in counseling patients. nTMS have the potential for finding possible abnormalities in the motor cortex areas.
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- motorické korové centrum diagnostické zobrazování MeSH
- nádory mozku * chirurgie MeSH
- neuronavigace metody MeSH
- předoperační péče * metody MeSH
- transkraniální magnetická stimulace * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alterations in the default mode network (DMN) are associated with aging. We assessed age-dependent changes of DMN interactions and correlations with a battery of neuropsychological tests, to understand the differences of DMN directed connectivity between young and older subjects. Using a novel multivariate analysis method on resting-state functional MRI data from fifty young and thirty-one healthy older subjects, we calculated intra- and inter-DMN 4-nodes directed pathways. For the old subject group, we calculated the partial correlations of inter-DMN pathways with: psychomotor speed and working memory, executive function, language, long-term memory and visuospatial function. Pathways connecting the DMN with visual and limbic regions in older subjects engaged at BOLD low frequency and involved the dorsal posterior cingulate cortex (PCC), whereas in young subjects, they were at high frequency and involved the ventral PCC. Pathways combining the sensorimotor (SM) cortex and the DMN, were SM efferent in the young subjects and SM afferent in the older subjects. Most DMN efferent pathways correlated with reduced speed and working memory. We suggest that the reduced sensorimotor efferent and the increased need to control such activities, cause a higher dependency on external versus internal cues thus suggesting how physical activity might slow aging.
- MeSH
- krátkodobá paměť MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku * metody MeSH
- mozek * diagnostické zobrazování MeSH
- nervové dráhy MeSH
- senioři MeSH
- stárnutí MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
- MeSH
- biologické markery MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- neurodegenerativní nemoci * MeSH
- neurozobrazování MeSH
- Parkinsonova nemoc * diagnostické zobrazování patologie MeSH
- progrese nemoci MeSH
- železo MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recognition memory is the ability to recognize previously encountered objects. Even this relatively simple, yet extremely fast, ability requires the coordinated activity of large-scale brain networks. However, little is known about the sub-second dynamics of these networks. The majority of current studies into large-scale network dynamics is primarily based on imaging techniques suffering from either poor temporal or spatial resolution. We investigated the dynamics of large-scale functional brain networks underlying recognition memory at the millisecond scale. Specifically, we analyzed dynamic effective connectivity from intracranial electroencephalography while epileptic subjects (n = 18) performed a fast visual recognition memory task. Our data-driven investigation using Granger causality and the analysis of communities with the Louvain algorithm spotlighted a dynamic interplay of two large-scale networks associated with successful recognition. The first network involved the right visual ventral stream and bilateral frontal regions. It was characterized by early, predominantly bottom-up information flow peaking at 115 ms. It was followed by the involvement of another network with predominantly top-down connectivity peaking at 220 ms, mainly in the left anterior hemisphere. The transition between these two networks was associated with changes in network topology, evolving from a more segregated to a more integrated state. These results highlight that distinct large-scale brain networks involved in visual recognition memory unfold early and quickly, within the first 300 ms after stimulus onset. Our study extends the current understanding of the rapid network changes during rapid cognitive processes.
Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.
- MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie * metody MeSH
- epilepsie * chirurgie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku metody MeSH
- neurozobrazování MeSH
- somatosenzorické evokované potenciály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH