-
Je něco špatně v tomto záznamu ?
Electrical Source Imaging of Somatosensory Evoked Potentials from Intracranial EEG Signals
A. Kalina, P. Jezdik, P. Fabera, P. Marusic, J. Hammer
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1999-07-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2009-05-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1999-07-01 do Před 1 rokem
Psychology Database (ProQuest)
od 1999-07-01 do Před 1 rokem
- MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie * metody MeSH
- epilepsie * chirurgie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku metody MeSH
- neurozobrazování MeSH
- somatosenzorické evokované potenciály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016059
- 003
- CZ-PrNML
- 005
- 20231026110518.0
- 007
- ta
- 008
- 231013s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10548-023-00994-5 $2 doi
- 035 __
- $a (PubMed)37642729
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kalina, Adam $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia. adam.kalina@fnmotol.cz
- 245 10
- $a Electrical Source Imaging of Somatosensory Evoked Potentials from Intracranial EEG Signals / $c A. Kalina, P. Jezdik, P. Fabera, P. Marusic, J. Hammer
- 520 9_
- $a Stereoelectroencephalography (SEEG) records electrical brain activity with intracerebral electrodes. However, it has an inherently limited spatial coverage. Electrical source imaging (ESI) infers the position of the neural generators from the recorded electric potentials, and thus, could overcome this spatial undersampling problem. Here, we aimed to quantify the accuracy of SEEG ESI under clinical conditions. We measured the somatosensory evoked potential (SEP) in SEEG and in high-density EEG (HD-EEG) in 20 epilepsy surgery patients. To localize the source of the SEP, we employed standardized low resolution brain electromagnetic tomography (sLORETA) and equivalent current dipole (ECD) algorithms. Both sLORETA and ECD converged to similar solutions. Reflecting the large differences in the SEEG implantations, the localization error also varied in a wide range from 0.4 to 10 cm. The SEEG ESI localization error was linearly correlated with the distance from the putative neural source to the most activated contact. We show that it is possible to obtain reliable source reconstructions from SEEG under realistic clinical conditions, provided that the high signal fidelity recording contacts are sufficiently close to the source of the brain activity.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a elektrokortikografie $x metody $7 D000069280
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 12
- $a epilepsie $x chirurgie $7 D004827
- 650 _2
- $a neurozobrazování $7 D059906
- 650 _2
- $a somatosenzorické evokované potenciály $7 D005073
- 650 _2
- $a mapování mozku $x metody $7 D001931
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jezdik, Petr $u Department of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czechia
- 700 1_
- $a Fabera, Petr $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia
- 700 1_
- $a Marusic, Petr $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia
- 700 1_
- $a Hammer, Jiri $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital (Full Member of the ERN EpiCARE), V Uvalu 84, 150 06, Prague 5, Czechia. jiri.hammer@lfmotol.cuni.cz
- 773 0_
- $w MED00007561 $t Brain topography $x 1573-6792 $g Roč. 36, č. 6 (2023), s. 835-853
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37642729 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026110512 $b ABA008
- 999 __
- $a ok $b bmc $g 1999908 $s 1202421
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 36 $c 6 $d 835-853 $e 20230829 $i 1573-6792 $m Brain topography $n Brain Topogr $x MED00007561
- LZP __
- $a Pubmed-20231013