-
Je něco špatně v tomto záznamu ?
Large-scale network dynamics underlying the first few hundred milliseconds after stimulus presentation: An investigation of visual recognition memory using iEEG
J. Kopal, J. Hlinka, E. Despouy, L. Valton, M. Denuelle, JC. Sol, J. Curot, EJ. Barbeau
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2020
PubMed Central
od 1998
ProQuest Central
od 2021-08-01
Medline Complete (EBSCOhost)
od 2012-07-01
Health & Medicine (ProQuest)
od 2021-08-01
Wiley-Blackwell Open Access Titles
od 2020
ROAD: Directory of Open Access Scholarly Resources
od 1993
PubMed
37688546
DOI
10.1002/hbm.26477
Knihovny.cz E-zdroje
- MeSH
- čelní lalok MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku * metody MeSH
- mozek * diagnostické zobrazování MeSH
- paměť MeSH
- rozpoznávání (psychologie) MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recognition memory is the ability to recognize previously encountered objects. Even this relatively simple, yet extremely fast, ability requires the coordinated activity of large-scale brain networks. However, little is known about the sub-second dynamics of these networks. The majority of current studies into large-scale network dynamics is primarily based on imaging techniques suffering from either poor temporal or spatial resolution. We investigated the dynamics of large-scale functional brain networks underlying recognition memory at the millisecond scale. Specifically, we analyzed dynamic effective connectivity from intracranial electroencephalography while epileptic subjects (n = 18) performed a fast visual recognition memory task. Our data-driven investigation using Granger causality and the analysis of communities with the Louvain algorithm spotlighted a dynamic interplay of two large-scale networks associated with successful recognition. The first network involved the right visual ventral stream and bilateral frontal regions. It was characterized by early, predominantly bottom-up information flow peaking at 115 ms. It was followed by the involvement of another network with predominantly top-down connectivity peaking at 220 ms, mainly in the left anterior hemisphere. The transition between these two networks was associated with changes in network topology, evolving from a more segregated to a more integrated state. These results highlight that distinct large-scale brain networks involved in visual recognition memory unfold early and quickly, within the first 300 ms after stimulus onset. Our study extends the current understanding of the rapid network changes during rapid cognitive processes.
Centre de Recherche Cerveau et Cognition Toulouse 3 University CNRS UMR 5549 Toulouse France
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
National Institute of Mental Health Klecany Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24000488
- 003
- CZ-PrNML
- 005
- 20240213093220.0
- 007
- ta
- 008
- 240109s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/hbm.26477 $2 doi
- 035 __
- $a (PubMed)37688546
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kopal, Jakub $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $u Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic $u Centre de Recherche Cerveau et Cognition, Toulouse III University - CNRS UMR 5549, Toulouse, France
- 245 10
- $a Large-scale network dynamics underlying the first few hundred milliseconds after stimulus presentation: An investigation of visual recognition memory using iEEG / $c J. Kopal, J. Hlinka, E. Despouy, L. Valton, M. Denuelle, JC. Sol, J. Curot, EJ. Barbeau
- 520 9_
- $a Recognition memory is the ability to recognize previously encountered objects. Even this relatively simple, yet extremely fast, ability requires the coordinated activity of large-scale brain networks. However, little is known about the sub-second dynamics of these networks. The majority of current studies into large-scale network dynamics is primarily based on imaging techniques suffering from either poor temporal or spatial resolution. We investigated the dynamics of large-scale functional brain networks underlying recognition memory at the millisecond scale. Specifically, we analyzed dynamic effective connectivity from intracranial electroencephalography while epileptic subjects (n = 18) performed a fast visual recognition memory task. Our data-driven investigation using Granger causality and the analysis of communities with the Louvain algorithm spotlighted a dynamic interplay of two large-scale networks associated with successful recognition. The first network involved the right visual ventral stream and bilateral frontal regions. It was characterized by early, predominantly bottom-up information flow peaking at 115 ms. It was followed by the involvement of another network with predominantly top-down connectivity peaking at 220 ms, mainly in the left anterior hemisphere. The transition between these two networks was associated with changes in network topology, evolving from a more segregated to a more integrated state. These results highlight that distinct large-scale brain networks involved in visual recognition memory unfold early and quickly, within the first 300 ms after stimulus onset. Our study extends the current understanding of the rapid network changes during rapid cognitive processes.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a mapování mozku $x metody $7 D001931
- 650 12
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 _2
- $a paměť $7 D008568
- 650 _2
- $a rozpoznávání (psychologie) $7 D021641
- 650 _2
- $a čelní lalok $7 D005625
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hlinka, Jaroslav $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $u National Institute of Mental Health, Klecany, Czech Republic $1 https://orcid.org/0000000314021470
- 700 1_
- $a Despouy, Elodie $u Centre de Recherche Cerveau et Cognition, Toulouse III University - CNRS UMR 5549, Toulouse, France
- 700 1_
- $a Valton, Luc $u Centre de Recherche Cerveau et Cognition, Toulouse III University - CNRS UMR 5549, Toulouse, France $u University Hospital Purpan, Toulouse, France
- 700 1_
- $a Denuelle, Marie $u Centre de Recherche Cerveau et Cognition, Toulouse III University - CNRS UMR 5549, Toulouse, France $u University Hospital Purpan, Toulouse, France
- 700 1_
- $a Sol, Jean-Christophe $u University Hospital Purpan, Toulouse, France $u Toulouse NeuroImaging Center, Toulouse, France
- 700 1_
- $a Curot, Jonathan $u Centre de Recherche Cerveau et Cognition, Toulouse III University - CNRS UMR 5549, Toulouse, France $u University Hospital Purpan, Toulouse, France
- 700 1_
- $a Barbeau, Emmanuel J $u Centre de Recherche Cerveau et Cognition, Toulouse III University - CNRS UMR 5549, Toulouse, France
- 773 0_
- $w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 44, č. 17 (2023), s. 5795-5809
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37688546 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240109 $b ABA008
- 991 __
- $a 20240213093217 $b ABA008
- 999 __
- $a ok $b bmc $g 2049258 $s 1210182
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 44 $c 17 $d 5795-5809 $e 20230909 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
- LZP __
- $a Pubmed-20240109