• This record comes from PubMed

Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania?

. 2023 Feb 03 ; 12 (2) : . [epub] 20230203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 36839518
PubMed Central PMC9967396
DOI 10.3390/pathogens12020246
PII: pathogens12020246
Knihovny.cz E-resources

Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.

See more in PubMed

Kolářová I., Valigurová A. Hide-and-seek: A game played between parasitic protists and their hosts. Microorganisms. 2021;9:2434. doi: 10.3390/microorganisms9122434. PubMed DOI PMC

Conceição-Silva F., Morgado F.N. Leishmania spp-host interaction: There is always an onset, but is there an end? Front. Cell. Infect. Microbiol. 2019;9:330. doi: 10.3389/fcimb.2019.00330. PubMed DOI PMC

Morgado F.N., Schubach A., Vasconcellos E., Azeredo-Coutinho R.B., Valete-Rosalino C.M., Quintella L.P., Santos G., Salgueiro M., Palmeiro M.R., Conceição-Silva F. Signs of an in situ inflammatory reaction in scars of human American tegumentary leishmaniasis. Parasite Immunol. 2010;32:285–295. doi: 10.1111/j.1365-3024.2009.01188.x. PubMed DOI

Martínez-Valencia A.J., Daza-Rivera C.F., Rosales-Chilama M., Cossio A., Casadiego Rincón E.J., Desai M.M., Saravia N.G., Gómez M.A. Clinical and parasitological factors in parasite persistence after treatment and clinical cure of cutaneous leishmaniasis. PLoS Negl. Trop. Dis. 2017;11:e0005713. doi: 10.1371/journal.pntd.0005713. PubMed DOI PMC

Walker D.M., Oghumu S., Gupta G., McGwire B.S., Drew M.E., Satoskar A.R. Mechanisms of cellular invasion by intracellular parasites. Cell. Mol. Life Sci. 2014;71:1245–1263. doi: 10.1007/s00018-013-1491-1. PubMed DOI PMC

Chaves M.M., Lee S.H., Kamenyeva O., Ghosh K., Peters N.C., Sacks D. The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLoS Pathog. 2020;16:e1008674. doi: 10.1371/journal.ppat.1008674. PubMed DOI PMC

Rittig M.G., Bogdan C. Leishmania-host-cell interaction: Complexities and alternative views. Parasitol. Today. 2000;16:292–297. doi: 10.1016/S0169-4758(00)01692-6. PubMed DOI

Cavalcante-Costa V.S., Costa-Reginaldo M., Queiroz-Oliveira T., Oliveira A.C.S., Couto N.F., Dos Anjos D.O., Lima-Santos J., Andrade L.O., Horta M.F., Castro-Gomes T. Leishmania amazonensis hijacks host cell lysosomes involved in plasma membrane repair to induce invasion in fibroblasts. J. Cell. Sci. 2019;132:jcs226183. doi: 10.1242/jcs.226183. PubMed DOI

Bogdan C., Donhauser N., Döring R., Röllinghoff M., Diefenbach A., Rittig M.G. Fibroblasts as host cells in latent leishmaniosis. J. Exp. Med. 2000;191:2121–2130. doi: 10.1084/jem.191.12.2121. PubMed DOI PMC

Minero M.A., Chinchilla M., Guerrero O.M., Castro A. Infection of skin fibroblasts in animals with different levels of sensitivity to Leishmania infantum and Leishmania mexicana (Kinetoplastida: Trypanosomatidae) Rev. Biol. Trop. 2004;52:261–267. doi: 10.15517/rbt.v52i1.14942. PubMed DOI

Holbrook T.W., Palczuk N.C. Leishmania in the chick embryo. IV. Effects of embryo age and hatching, and behavior of L. donovani in cultures of chick fibroblasts. Exp. Parasitol. 1975;37:398–404. doi: 10.1016/0014-4894(75)90009-0. PubMed DOI

Dedet J.P., Ryter A., Vogt E., Hosli P., Da Silva L.P. Uptake and killing of Leishmania mexicana amazonensis amastigotes by human skin fibroblasts. Ann. Trop. Med. Parasitol. 1983;77:35–44. doi: 10.1080/00034983.1983.11811670. PubMed DOI

Kaye P., Scott P. Leishmaniasis: Complexity at the host-pathogen interface. Nat. Rev. Microbiol. 2011;9:604–615. doi: 10.1038/nrmicro2608. PubMed DOI

Corte-Real S., Santos C.B., Meirelles M.N. Differential expression of the plasma membrane Mg2+ ATPase and Ca2+ ATPase activity during adhesion and interiorization of Leishmania amazonensis in fibroblasts in vitro. J. Submicrosc. Cytol. Pathol. 1995;27:359–366. PubMed

Orikaza C.M., Pessoa C.C., Paladino F.V., Florentino P.T.V., Barbiéri C.L., Goto H., Ramos-Sanchez E.M., Silveira J.F.D., Rabinovitch M., Mortara R.A., et al. Dual host-intracellular parasite transcriptome of enucleated cells hosting Leishmania amazonensis: Control of half-life of host cell transcripts by the parasite. Infect. Immun. 2020;88:e00261-20. doi: 10.1128/IAI.00261-20. PubMed DOI PMC

Allahverdiyev A.M., Bagirova M., Elcicek S., Koc R.C., Baydar S.Y., Findikli N., Oztel O.N. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis. Am. J. Trop. Med. Hyg. 2011;85:535–539. doi: 10.4269/ajtmh.2011.11-0037. PubMed DOI PMC

Carneiro M.B., Peters N.C. The paradox of a phagosomal lifestyle: How innate host cell-Leishmania amazonensis interactions lead to a progressive chronic disease. Front. Immunol. 2021;12:728848. doi: 10.3389/fimmu.2021.728848. PubMed DOI PMC

Rabinovitch M. Professional and non-professional phagocytes: An introduction. Trends Cell Biol. 1995;5:85–87. doi: 10.1016/S0962-8924(00)88955-2. PubMed DOI

Laskay T., van Zandbergen G., Solbach W. Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: Apoptosis as infection-promoting factor. Immunobiology. 2008;213:183–191. doi: 10.1016/j.imbio.2007.11.010. PubMed DOI

van Zandbergen G., Klinger M., Mueller A., Dannenberg S., Gebert A., Solbach W., Laskay T. Cutting edge: Neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J. Immunol. 2004;173:6521–6525. doi: 10.4049/jimmunol.173.11.6521. PubMed DOI

Bidri M., Vouldoukis I., Mossalayi M.D., Debré P., Guillosson J.J., Mazier D., Arock M. Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol. 1997;19:475–483. doi: 10.1046/j.1365-3024.1997.d01-153.x. PubMed DOI

Naqvi N., Srivastava R., Selvapandiyan A., Puri N. Host mast cells in leishmaniasis: Friend or foe? Trends Parasitol. 2020;36:952–956. doi: 10.1016/j.pt.2020.09.010. PubMed DOI

Rodríguez N.E., Wilson M.E. Eosinophils and mast cells in leishmaniasis. Immunol. Res. 2014;59:129–141. doi: 10.1007/s12026-014-8536-x. PubMed DOI PMC

Martínez-López M., Soto M., Iborra S., Sancho D. Leishmania hijacks myeloid cells for immune escape. Front. Microbiol. 2018;9:883. doi: 10.3389/fmicb.2018.00883. PubMed DOI PMC

Rebouças A., Silva T.S., Medina L.S., Paredes B.D., Aragão L.S., Souza B.S.F., Borges V.M., Schriefer A., Veras P.S.T., Brodskyn C.I., et al. Leishmania-induced dendritic cell migration and its potential contribution to parasite dissemination. Microorganisms. 2021;9:1268. doi: 10.3390/microorganisms9061268. PubMed DOI PMC

Hurrell B.P., Beaumann M., Heyde S., Regli I.B., Müller A.J., Tacchini-Cottier F. Frontline Science: Leishmania mexicana amastigotes can replicate within neutrophils. J. Leukoc. Biol. 2017;102:1187–1198. doi: 10.1189/jlb.4HI0417-158R. PubMed DOI

Passelli K., Billion O., Tacchini-Cottier F. The impact of neutrophil recruitment to the skin on the pathology induced by Leishmania infection. Front. Immunol. 2021;12:649348. doi: 10.3389/fimmu.2021.649348. PubMed DOI PMC

Andrade L.O. Chapter Nine—Plasma membrane repair involvement in parasitic and other pathogen infections. In: Andrade L.O., editor. Current Topics in Membranes. Vol. 84. Academic Press; Cambridge, MA, USA: 2019. pp. 217–238. PubMed DOI

Forestier C.-L., Machu C., Loussert C., Pescher P., Späth G.F. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe. 2011;9:319–330. doi: 10.1016/j.chom.2011.03.011. PubMed DOI

Kima P.E. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int. J. Parasitol. 2007;37:1087–1096. doi: 10.1016/j.ijpara.2007.04.007. PubMed DOI PMC

Ueno N., Wilson M.E. Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival. Trends Parasitol. 2012;28:335–344. doi: 10.1016/j.pt.2012.05.002. PubMed DOI PMC

Mayor S., Pagano R.E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 2007;8:603–612. doi: 10.1038/nrm2216. PubMed DOI PMC

Machado F.S., Rodriguez N.E., Adesse D., Garzoni L.R., Esper L., Lisanti M.P., Burk R.D., Albanese C., Van Doorslaer K., Weiss L.M., et al. Recent developments in the interactions between caveolin and pathogens. In: Jasmin J.F., Frank P.G., Lisanti M.P., editors. Caveolins and Caveolae. Advances in Experimental Medicine and Biology. Vol. 729. Springer; New York, NY, USA: 2012. pp. 65–82. PubMed DOI PMC

Kumar G.A., Karmakar J., Mandal C., Chattopadhyay A. Leishmania donovani internalizes into host cells via caveolin-mediated endocytosis. Sci. Rep. 2019;9:12636. doi: 10.1038/s41598-019-49007-1. PubMed DOI PMC

Rodríguez N.E., Gaur Dixit U., Allen L.-A.H., Wilson M.E. Stage-specific pathways of Leishmania infantum chagasi entry and phagosome maturation in macrophages. PLoS ONE. 2011;6:e19000. doi: 10.1371/journal.pone.0019000. PubMed DOI PMC

Ueno N., Bratt C.L., Rodriguez N.E., Wilson M.E. Differences in human macrophage receptor usage, lysosomal fusion kinetics and survival between logarithmic and metacyclic Leishmania infantum chagasi promastigotes. Cell. Microbiol. 2009;11:1827–1841. doi: 10.1111/j.1462-5822.2009.01374.x. PubMed DOI PMC

Rodríguez N.E., Gaur U., Wilson M.E. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell. Microbiol. 2006;8:1106–1120. doi: 10.1111/j.1462-5822.2006.00695.x. PubMed DOI

Fernandes M.C., Cortez M., Flannery A.R., Tam C., Mortara R.A., Andrews N.W. Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. J. Exp. Med. 2011;208:909–921. doi: 10.1084/jem.20102518. PubMed DOI PMC

Andrews N.W. Lysosomes and the plasma membrane: Trypanosomes reveal a secret relationship. J. Cell Biol. 2002;158:389–394. doi: 10.1083/jcb.200205110. PubMed DOI PMC

Seeberg J.C., Loibl M., Moser F., Schwegler M., Büttner-Herold M., Daniel C., Engel F.B., Hartmann A., Schlötzer-Schrehardt U., Goppelt-Struebe M., et al. Non-professional phagocytosis: A general feature of normal tissue cells. Sci. Rep. 2019;9:11875. doi: 10.1038/s41598-019-48370-3. PubMed DOI PMC

Williams T.M., Lisanti M.P. The caveolin proteins. Genome Biol. 2004;5:214. doi: 10.1186/gb-2004-5-3-214. PubMed DOI PMC

Morehead J., Coppens I., Andrews N.W. Opsonization modulates Rac-1 activation during cell entry by Leishmania amazonensis. Infect. Immun. 2002;70:4571–4580. doi: 10.1128/IAI.70.8.4571-4580.2002. PubMed DOI PMC

Lewis D.H. Infection of tissue culture cells of low phagocytic ability by Leishmania mexicana mexicana. Ann. Trop. Med. Parasitol. 1974;68:327–336. doi: 10.1080/00034983.1974.11686955. PubMed DOI

Lainson R., Strangways-Dixon J. Leishmania mexicana: The epidemiology of dermal leishmaniasis in British Honduras. Trans. R. Soc. Trop. Med. Hyg. 1963;57:242–265. doi: 10.1016/0035-9203(63)90182-2. PubMed DOI

Mendes B., Minori K., Consonni S.R., Andrews N.W., Miguel D.C. Causative agents of American tegumentary leishmaniasis are able to infect 3T3-L1 adipocytes in vitro. Front. Cell. Infect. Microbiol. 2022;12:824494. doi: 10.3389/fcimb.2022.824494. PubMed DOI PMC

Schwing A., Pisani D.F., Pomares C., Majoor A., Lacas-Gervais S., Jager J., Lemichez E., Marty P., Boyer L., Michel G. Identification of adipocytes as target cells for Leishmania infantum parasites. Sci. Rep. 2021;11:21275. doi: 10.1038/s41598-021-00443-y. PubMed DOI PMC

Noronha F.S.M., Cruz J.S., Beirão P.S.L., Horta M.F. Macrophage damage by Leishmania amazonensis cytolysin: Evidence of pore formation on cell membrane. Infect. Immun. 2000;68:4578–4584. doi: 10.1128/IAI.68.8.4578-4584.2000. PubMed DOI PMC

Castro-Gomes T., Almeida-Campos F.R., Calzavara-Silva C.E., da Silva R.A., Frézard F., Horta M.F. Membrane binding requirements for the cytolytic activity of Leishmania amazonensis leishporin. FEBS Lett. 2009;583:3209–3214. doi: 10.1016/j.febslet.2009.09.005. PubMed DOI

Chang K.P., Fish W.R. Leishmania. In: Jenson P., editor. In Vitro Cultivation of Protozoan Parasites. CRC Press; Boca Raton, FL, USA: 2018. pp. 11–153. DOI

Miranda A.A., Sarmiento L., Caldas M.L., Zapata C., Bello F.J. Morphology and cytochemistry of Aedes aegypti’s cell cultures (Diptera: Culicidae) and susceptibility to Leishmania panamensis (Kinetoplastida: Trypanosomatidae) Rev. Biol. Trop. 2008;56:447–458. PubMed

Zapata Lesmes A.C., Cárdenas Castro E., Bello F. Characterization of cell cultures derived from Lutzomyia spinicrassa (Diptera: Psychodidae) and their susceptibility to infection with Leishmania (Viannia) braziliensis. Med. Sci. Monit. 2005;11:BR457–BR464. PubMed

Dedet J.P., Gaudin O.G. Leishmania donovani multiplication in a cell line of Aedes albopictus. Trans. R. Soc. Trop. Med. Hyg. 1976;70:535–536. doi: 10.1016/0035-9203(76)90154-1. PubMed DOI

Locksley R.M., Heinzel F.P., Fankhauser J.E., Nelson C.S., Sadick M.D. Cutaneous host defense in leishmaniasis: Interaction of isolated dermal macrophages and epidermal Langerhans cells with the insect-stage promastigote. Infect. Immun. 1988;56:336–342. doi: 10.1128/iai.56.2.336-342.1988. PubMed DOI PMC

von Stebut E., Belkaid Y., Jakob T., Sacks D.L., Udey M.C. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin–derived dendritic cells: Implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 1998;188:1547–1552. doi: 10.1084/jem.188.8.1547. PubMed DOI PMC

Mbow M.L., DeKrey G.K., Titus R.G. Leishmania major induces differential expression of costimulatory molecules on mouse epidermal cells. Eur. J. Immunol. 2001;31:1400–1409. doi: 10.1002/1521-4141(200105)31:5<1400::AID-IMMU1400>3.0.CO;2-J. PubMed DOI

Moll H., Flohé S., Röllinghoff M. Dendritic cells in Leishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response. Eur. J. Immunol. 1995;25:693–699. doi: 10.1002/eji.1830250310. PubMed DOI

Blank C., Fuchs H., Rappersberger K., Röllinghoff M., Moll H. Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J. Infect. Dis. 1993;167:418–425. doi: 10.1093/infdis/167.2.418. PubMed DOI

Stenger S., Donhauser N., Thüring H., Röllinghoff M., Bogdan C. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 1996;183:1501–1514. doi: 10.1084/jem.183.4.1501. PubMed DOI PMC

Williams R.O. Invasion of murine dendritic cells by Leishmania major and L. mexicana mexicana. J. Parasitol. 1988;74:186–187. doi: 10.2307/3282496. PubMed DOI

Henri S., Curtis J., Hochrein H., Vremec D., Shortman K., Handman E. Hierarchy of susceptibility of dendritic cell subsets to infection by Leishmania major: Inverse relationship to interleukin-12 production. Infect. Immun. 2002;70:3874–3880. doi: 10.1128/IAI.70.7.3874-3880.2002. PubMed DOI PMC

Contreras I., Estrada J.A., Guak H., Martel C., Borjian A., Ralph B., Shio M.T., Fournier S., Krawczyk C.M., Olivier M. Impact of Leishmania mexicana infection on dendritic cell signaling and functions. PLoS Negl. Trop. Dis. 2014;8:e3202. doi: 10.1371/journal.pntd.0003202. PubMed DOI PMC

Boggiatto P.M., Jie F., Ghosh M., Gibson-Corley K.N., Ramer-Tait A.E., Jones D.E., Petersen C.A. Altered dendritic cell phenotype in response to Leishmania amazonensis amastigote infection is mediated by MAP kinase, ERK. Am. J. Pathol. 2009;174:1818–1826. doi: 10.2353/ajpath.2009.080905. PubMed DOI PMC

Prina E., Abdi S.Z., Lebastard M., Perret E., Winter N., Antoine J.-C. Dendritic cells as host cells for the promastigote and amastigote stages of Leishmania amazonensis: The role of opsonins in parasite uptake and dendritic cell maturation. J. Cell Sci. 2004;117:315–325. doi: 10.1242/jcs.00860. PubMed DOI

Xin L., Li K., Soong L. Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes. Mol. Immunol. 2008;45:3371–3382. doi: 10.1016/j.molimm.2008.04.018. PubMed DOI PMC

Margaroni M., Agallou M., Vasilakaki A., Karagkouni D., Skoufos G., Hatzigeorgiou A.G., Karagouni E. Transcriptional profiling of Leishmania infantum infected dendritic cells: Insights into the role of immunometabolism in host-parasite interaction. Microorganisms. 2022;10:1271. doi: 10.3390/microorganisms10071271. PubMed DOI PMC

Donaghy L., Cabillic F., Corlu A., Rostan O., Toutirais O., Guguen-Guillouzo C., Guiguen C., Gangneux J.P. Immunostimulatory properties of dendritic cells after Leishmania donovani infection using an in vitro model of liver microenvironment. PLoS Negl. Trop. Dis. 2010;4:e703. doi: 10.1371/journal.pntd.0000703. PubMed DOI PMC

Naqvi N., Ahuja K., Selvapandiyan A., Dey R., Nakhasi H., Puri N. Role of mast cells in clearance of Leishmania through extracellular trap formation. Sci. Rep. 2017;7:13240. doi: 10.1038/s41598-017-12753-1. PubMed DOI PMC

Pearson R.D., Uydess I.L., Chapman S.W., Steigbigel R.T. Interaction of human eosinophils with Leishmania donovani. Ann. Trop. Med. Parasitol. 1987;81:735–739. doi: 10.1080/00034983.1987.11812179. PubMed DOI

Chang K.-P. Leishmanicidal mechanisms of human polymorphonuclear phagocytes. Am. J. Trop. Med. Hyg. 1981;30:322–333. doi: 10.4269/ajtmh.1981.30.322. PubMed DOI

Oliveira S.H., Fonseca S.G., Romão P.R., Figueiredo F., Ferreira S.H., Cunha F.Q. Microbicidal activity of eosinophils is associated with activation of the arginine-NO pathway. Parasite Immunol. 1998;20:405–412. doi: 10.1046/j.1365-3024.1998.00159.x. PubMed DOI

Pimenta P.F., Dos Santos M.A., De Souza W. Fine structure and cytochemistry of the interaction between Leishmania mexicana amazonensis and rat neutrophils and eosinophils. J. Submicrosc. Cytol. 1987;19:387–395. PubMed

Grimaldi G.J., Soares M.J., Moriearty P.L. Tissue eosinophilia and Leishmania mexicana mexicana eosinophil interactions in murine cutaneous leishmaniasis. Parasite Immunol. 1984;6:397–408. doi: 10.1111/j.1365-3024.1984.tb00811.x. PubMed DOI

Lamy L., Samso A., Lamy H. Installation, multiplication et entretien d’une souche de Leishmania donovani en culture cellulaire. Bull. Soc. Path. Exot. 1964;57:16–21. PubMed

Frothingham T.E., Lehtimaki E. Prolonged growth of Leishmania species in cell culture. J. Parasitol. 1969;55:196–199. doi: 10.2307/3277370. PubMed DOI

Akiyama H.J., McQuillen N.K. Interaction and transformation of Leishmania donovani within in vitro cultured cells: An electron microscopical study. Am. J. Trop. Med. Hyg. 1972;21:873–879. doi: 10.4269/ajtmh.1972.21.873. PubMed DOI

Lamy L.H. La transformation réciproque des formes mastigotes et amastigotes de Leishmania et son déterminisme en présence de cellules vivantes in vitro. Ann. Inst. Pasteur. 1969;117:545–555. PubMed

Lamy L.H., Fromentin H., Lamy H. Comparison, perte et récupération du pouvoir infectieux par des Leishmania en l’absence et en présence de cellules vivantes. Protistologica. 1971;7:435–437.

Mattock N.M., Peters W. The experimental chemotherapy of leishmaniasis. I: Techniques for the study of drug action in tissue culture. Ann. Trop. Med. Parasitol. 1975;69:349–357. doi: 10.1080/00034983.1975.11687019. PubMed DOI

Manna P.P., Basu A., Saha A., Hassan M.Q., Mukherjee S., Majumdar S., Adhya S., Bandyopadhyay S. Leishmania donovani infects lymphocyte cell lines in vitro. Curr. Sci. 1997;73:610–614.

Macedo-Silva R.M., dos Santos C.D.P., Diniz V.A., de Carvalho J.J., Guerra C., Corte-Real S. Peripheral blood fibrocytes: New information to explain the dynamics of Leishmania infection. Mem. Inst. Oswaldo Cruz. 2014;109:61–69. doi: 10.1590/0074-0276130247. PubMed DOI PMC

Rodríguez J.H., Mozos E., Méndez A., Pérez J., Gómez-Villamandos J.C. Leishmania infection of canine skin fibroblasts in vivo. Vet. Pathol. 1996;33:469–473. doi: 10.1177/030098589603300423. PubMed DOI

Ferrer L., Rabanal R.M., Domingo M., Ramos J.A., Fondevila D. Identification of Leishmania donovani amastigotes in canine tissues by immunoperoxidase staining. Res. Vet. Sci. 1988;44:194–196. doi: 10.1016/S0034-5288(18)30838-5. PubMed DOI

Dabiri S., Hayes M.M.M., Meymandi S.S., Basiri M., Soleimani F., Mousavi M.R.A. Cytologic features of “dry-type” cutaneous leishmaniasis. Diagn. Cytopathol. 1998;19:182–185. doi: 10.1002/(SICI)1097-0339(199809)19:3<182::AID-DC5>3.0.CO;2-F. PubMed DOI

el-Shoura S.M., Tallab T.M., Bahamdan K.A. Human cutaneous leishmaniasis: Ultrastructural interactions between the inflammatory cells and Leishman bodies in the skin lesions. Parasite. 1996;3:229–236. doi: 10.1051/parasite/1996033229. PubMed DOI

el-Shoura S.M., Sheikha A.K., Bahamdan K.A., Tallab T.M., Hassounah O.A. Visceral and cutaneous leishmaniasis comparative ultrastructure of host-parasite interactions. J. Egypt. Soc. Parasitol. 1995;25:861–876. PubMed

Chang K.P. Leishmania infection of human skin fibroblasts in vitro: Absence of phagolysosomal fusion after induced phagocytosis of promastigotes, and their intracellular transformation. Am. J. Trop. Med. Hyg. 1978;27:1084–1096. doi: 10.4269/ajtmh.1978.27.1084. PubMed DOI

Schwartzman J.D., Pearson R.D. The interaction of Leishmania donovani promastigotes and human fibroblasts in vitro. Am. J. Trop. Med. Hyg. 1985;34:850–855. doi: 10.4269/ajtmh.1985.34.850. PubMed DOI

Yektaeian N., Zare S., Radfar A.H., Hatam G. Superparamagnetic iron oxide-labeled Leishmania major can be traced in fibroblasts. J. Parasitol. Res. 2023;2023:7628912. doi: 10.1155/2023/7628912. PubMed DOI PMC

Yektaeian N., Mehrabani D., Sepaskhah M., Zare S., Jamhiri I., Hatam G. Lipophilic tracer Dil and fluorescence labeling of acridine orange used for Leishmania major tracing in the fibroblast cells. Heliyon. 2019;5:e03073. doi: 10.1016/j.heliyon.2019.e03073. PubMed DOI PMC

de Oliveira Cardoso F., da Silva Freitas de Souza C., Gonçalves Mendes V., Abreu-Silva A.L., da Costa S.C.G., da Silva Calabrese K. Immunopathological studies of Leishmania amazonensis infection in resistant and in susceptible mice. J. Infect. Dis. 2010;201:1933–1940. doi: 10.1086/652870. PubMed DOI

Hespanhol R.C., Soeiro M.d.N.C., Meuser M.B., Meirelles M.d.N.S.L., Côrte-Real S. The expression of mannose receptors in skin fibroblast and their involvement in Leishmania (L.) amazonensis invasion. J. Histochem. Cytochem. 2005;53:35–44. doi: 10.1177/002215540505300105. PubMed DOI

Daneshbod Y., Daneshbod K., Khademi B., Negahban S., Bedayat G.R. New cytologic clues in localized Leishmania lymphadenitis. Acta Cytol. 2007;51:699–710. doi: 10.1159/000325832. PubMed DOI

Haldar A.K., Nigam U., Yamamoto M., Coers J., Goyal N. Guanylate binding proteins restrict Leishmania donovani growth in nonphagocytic cells independent of parasitophorous vacuolar targeting. MBio. 2020;11:e01464-20. doi: 10.1128/mBio.01464-20. PubMed DOI PMC

Hallé M., Gomez M.A., Stuible M., Shimizu H., McMaster W.R., Olivier M., Tremblay M.L. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J. Biol. Chem. 2009;284:6893–6908. doi: 10.1074/jbc.M805861200. PubMed DOI PMC

Pai H.C., Hu C.H. Attempts to grow Leishmania donovani in tissue cultures. Proc. Soc. Exp. Biol. Med. 1941;46:606–608. doi: 10.3181/00379727-46-12079. DOI

Vasconcellos C., Sotto M.N. Experimental cutaneous leishmaniasis: Transmission electron microscopy of the inoculation site. Int. J. Exp. Pathol. 1997;78:81–89. doi: 10.1046/j.1365-2613.1997.d01-243.x. PubMed DOI PMC

Ara M., Maillo C., Peon G., Clavel A., Cuesta J., Grasa M.P., Carapeto F.J. Visceral leishmaniasis with cutaneous lesions in a patient infected with human immunodeficiency virus. Br. J. Dermatol. 1998;139:114–117. doi: 10.1046/j.1365-2133.1998.02326.x. PubMed DOI

Perrin C., Taillan B., Hofman P., Mondain V., Lefichoux Y., Michiels J.F. Atypical cutaneous histological features of visceral leishmaniasis in acquired immunodeficiency syndrome. Am. J. Dermatopathol. 1995;17:145–150. doi: 10.1097/00000372-199504000-00006. PubMed DOI

Calabrese K.D., Silva L.D., Carvalho L.O.P., Hardoim D.D., da Silva-Almeida M., Mortara R.A., de Souza C.D.F. Infection of retinal epithelial cells with L. amazonensis impacts in extracellular matrix proteins. Parasitol. Res. 2011;109:727–736. doi: 10.1007/s00436-011-2369-5. PubMed DOI

Frothingham T.E., Lehtimaki E. Leishmania in primary cultures of human amniotic cells. Am. J. Trop. Med. Hyg. 1967;16:658–664. doi: 10.4269/ajtmh.1967.16.658. PubMed DOI

Belle E.A. Cultivation of Leishmania donovani in human amnion epithelial cell tissue cultures: A preliminary report. Can. Med. Assoc. J. 1958;79:726–728. PubMed PMC

Degtiareva S.M., Zasukhin D.N. Cultivation of the causative agent of cutaneous leishmaniasis of the desert type in tissue culture. Med. Parazitol(Mosk). 1959;28:706–710. PubMed

Miller H.C. Master’s Thesis. Michigan State University of Agriculture and Applied Science; East Lansing, MI, USA: 1966. Invasion of Cultured Cells by Leptomonads of Leishmania donovani.

Herman R. Acriflavin-induced dyskinetoplastic Leishmania donovani grown in monkey kidney cell culture. J. Protozool. 1968;15:35–44. doi: 10.1111/j.1550-7408.1968.tb02087.x. PubMed DOI

Pessotti J.H., Zaverucha Do Valle T., Corte-Real S., Gonçalves Da Costa S.C. Interaction of Leishmania (L.) chagasi with the Vero cell line. Parasite. 2004;11:99–102. doi: 10.1051/parasite/200411199. PubMed DOI

Walton B.C., Brooks W.H., Arjona I. Serodiagnosis of American leishmaniasis by indirect fluorescent antibody test. Am. J. Trop. Med. Hyg. 1972;21:296–299. doi: 10.4269/ajtmh.1972.21.296. PubMed DOI

Veras P.S., Moulia C., Dauguet C., Tunis C.T., Thibon M., Rabinovitch M. Entry and survival of Leishmania amazonensis amastigotes within phagolysosome-like vacuoles that shelter Coxiella burnetii in Chinese hamster ovary cells. Infect. Immun. 1995;63:3502–3506. doi: 10.1128/iai.63.9.3502-3506.1995. PubMed DOI PMC

Veras P.S., de Chastellier C., Moreau M.F., Villiers V., Thibon M., Mattei D., Rabinovitch M. Fusion between large phagocytic vesicles: Targeting of yeast and other particulates to phagolysosomes that shelter the bacterium Coxiella burnetii or the protozoan Leishmania amazonensis in Chinese hamster ovary cells. J. Cell Sci. 1994;107:3065–3076. doi: 10.1242/jcs.107.11.3065. PubMed DOI

Lopes C.S., Daifalla N., Das B., Dias da Silva V., Campos-Neto A. CD271+ mesenchymal stem cells as a possible infectious niche for Leishmania infantum. PLoS ONE. 2016;11:e0162927. doi: 10.1371/journal.pone.0162927. PubMed DOI PMC

Vamvakidis C.D., Koutinas A.E., Saridomichelakis M., Kanakoudis G., Georgiadis G. Masticatory and skeletal muscle myositis in canine leishmaniasis (Leishmania infantum) Vet. Rec. 2000;146:698–703. doi: 10.1136/vr.146.24.698. PubMed DOI

Naranjo C., Fondevila D., Leiva M., Roura X., Peña T. Detection of Leishmania spp. and associated inflammation in ocular-associated smooth and striated muscles in dogs with patent leishmaniosis. Vet. Ophthalmol. 2010;13:139–143. doi: 10.1111/j.1463-5224.2010.00768.x. PubMed DOI

Silva-Almeida M., Carvalho L.O.P., Abreu-Silva A.L., d’Escoffier L.N., Calabrese K.S. Leishmania (Leishmania) amazonensis infection: Muscular involvement in BALB/c and C3H.HeN mice. Exp. Parasitol. 2010;124:315–318. doi: 10.1016/j.exppara.2009.11.006. PubMed DOI

Jarallah H.M. Pathological effects of Leishmania donovani promastigotes on liver and spleen of experimentally infected BALB/c mice. Med. J. Baby. 2016;13:134–140.

Piekarski G. Medizinische Parasitologie in Tafeln. Springer; Berlin, Heidelberg: 1987. Protozoen; pp. 5–115.

Adler S. A Note on the histopathology of a case of experimental cutaneous leishmaniasis. Ann. Trop. Med. Parasitol. 1926;20:407–410. doi: 10.1080/00034983.1926.11684511. DOI

D’Alessandro S., Parapini S., Corbett Y., Frigerio R., Delbue S., Modenese A., Gramiccia M., Ferrante P., Taramelli D., Basilico N. Leishmania promastigotes enhance neutrophil recruitment through the production of CXCL8 by endothelial cells. Pathogens. 2021;10:1380. doi: 10.3390/pathogens10111380. PubMed DOI PMC

Scorza B.M., Wacker M.A., Messingham K., Kim P., Klingelhutz A., Fairley J., Wilson M.E. Differential activation of human keratinocytes by Leishmania species causing localized or disseminated disease. J. Investig. Dermatol. 2017;137:2149–2156. doi: 10.1016/j.jid.2017.05.028. PubMed DOI PMC

Lelijveld J., Atanasiu P. Multiplication de Leishmania brasiliensis sur culture cellulaire de rein de hamster. Ann. Inst. Pasteur (Paris) 1966;110:788–791. PubMed

Lupaşco G., Bossie A., Dincoulesco M., Epurean E., Profeta A. Cultivation and cytopathogenic activity of L. donovani in tissue cultures. Arch. Roum. Pathol. Exp. Microbiol. 1968;27:641–650. PubMed

Trindade S., Rijo-Ferreira F., Carvalho T., Pinto-Neves D., Guegan F., Aresta-Branco F., Bento F., Young S.A., Pinto A., Van Den Abbeele J., et al. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe. 2016;19:837–848. doi: 10.1016/j.chom.2016.05.002. PubMed DOI PMC

Ferreira A.V., Segatto M., Menezes Z., Macedo A.M., Gelape C., de Oliveira Andrade L., Nagajyothi F., Scherer P.E., Teixeira M.M., Tanowitz H.B. Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes Infect. 2011;13:1002–1005. doi: 10.1016/j.micinf.2011.06.002. PubMed DOI PMC

Costales J.A., Daily J.P., Burleigh B.A. Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling. BMC Genom. 2009;10:252. doi: 10.1186/1471-2164-10-252. PubMed DOI PMC

Perry H.M. Some Observations on the occurrence of Leishmania in the intestinal tissues in Indian kala-azar; on the pathological changes occasioned by their presence, and on their possible significance in this situation. Proc. R. Soc. Med. 1923;16:1–8. doi: 10.1177/003591572301602101. PubMed DOI PMC

Lugo-Yarbuh A., Valera M., Alarcón M., Moreno E., Premoli-Percoco G., Colasante C. Detection of Leishmania (Viannia) braziliensis in vascular endothelium lesions of patients with localized cutaneous leishmaniasis. Investig. Clin. 2003;44:61–76. PubMed

dos Santos I.B., Tortelly R., Quintella L.P., de Fátima Madeira M., Monteiro de Miranda L.H., Borges Figueiredo F., Carvalhaes de Oliveira Rde V., Pacheco Schubach T.M. Higher sensitivity of immunohistochemistry for bona fide diagnosis of dog Leishmania (Viannia) braziliensis-driven American tegumentary leishmaniasis: Description of an optimized immunohistochemistry method. Trans. R. Soc. Trop. Med. Hyg. 2015;109:469–476. doi: 10.1093/trstmh/trv034. PubMed DOI

Caparrós E., Serrano D., Puig-Kröger A., Riol L., Lasala F., Martinez I., Vidal-Vanaclocha F., Delgado R., Rodríguez-Fernández J.L., Rivas L., et al. Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes. Immunobiology. 2005;210:185–193. doi: 10.1016/j.imbio.2005.05.013. PubMed DOI PMC

Elhassan A.M., Gaafar A., Theander T.G. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major. Clin. Exp. Immunol. 2008;99:445–453. doi: 10.1111/j.1365-2249.1995.tb05571.x. PubMed DOI PMC

Venugopal G., Bird J.T., Washam C.L., Roys H., Bowlin A., Byrum S.D., Weinkopff T. In vivo transcriptional analysis of mice infected with Leishmania major unveils cellular heterogeneity and altered transcriptomic profiling at single-cell resolution. PLoS Negl. Trop. Dis. 2022;16:e0010518. doi: 10.1371/journal.pntd.0010518. PubMed DOI PMC

Mandell M.A., Beverley S.M. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc. Natl. Acad. Sci. USA. 2017;114:E801–E810. doi: 10.1073/pnas.1619265114. PubMed DOI PMC

Dostálová A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit. Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC

Cecílio P., Cordeiro-da-Silva A., Oliveira F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022;5:305. doi: 10.1038/s42003-022-03240-z. PubMed DOI PMC

Robles-Loaiza A.A., Pinos-Tamayo E.A., Mendes B., Teixeira C., Alves C., Gomes P., Almeida J.R. Peptides to tackle leishmaniasis: Current status and future directions. Int. J. Mol. Sci. 2021;22:4400. doi: 10.3390/ijms22094400. PubMed DOI PMC

Arumugam S., Scorza B.M., Petersen C. Visceral leishmaniasis and the skin: Dermal parasite transmission to sand flies. Pathogens. 2022;11:610. doi: 10.3390/pathogens11060610. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...