Leishmania development in sand flies: parasite-vector interactions overview

. 2012 Dec 03 ; 5 () : 276. [epub] 20121203

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23206339

Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.

Zobrazit více v PubMed

Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17:279–289. PubMed

Lainson R, Ward RD, Shaw JJ. Leishmania in phlebotomid sandflies: VI. Importance of hindgut development in distinguishing between parasites of the Leishmania mexicana and L. braziliensis complexes. Proc R Soc Lond [Biol ] 1977;199:309–320. PubMed

Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002;124:495–507. PubMed

Walters LI. Leishmania Differentiation in Natural and Unnatural Sand Fly Hosts. J Eukaryot Microbiol. 1993;40:196–206. PubMed

Gossage SA, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol. 2003;33:1027–1034. PubMed PMC

Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. PubMed

Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37:1097–1106. PubMed PMC

Sacks DL, Perkins PV. Development of infective stage Leishmania promastigotes within phlebotomine sandflies. Am J Trop Med Hyg. 1985;34:456–459. PubMed

GeneDB: http://www.genedb.org/.

Phlebotomus papatasi genome project: http://genome.wustl.edu/genomes/view/phlebotomus_papatasi/.

Lutzomyia longipalpis genome project: http://www.hgsc.bcm.tmc.edu/project-species-i-Lutzomyia_longipalpis.hgsc.

Esseghir S, Ready PD, Killick-Kendrick R, Benismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol Biol. 1997;6:211–225. PubMed

Esseghir S, Ready PD, Ben-Ismail R. Speciation of Phlebotomus sandflies of the subgenus Larroussius coincided with the late Miocene-Pliocene aridification of the Mediterranean subregion. Biol J Lin Soc. 2000;70:189–219.

Depaquit J, Ferte H, Leger N, Lefranc F, Alves-Pires C, Hanafi H, Maroli M, Morillas-Marquez F, Rioux JA, Svobodova M, Volf P. ITS 2 sequences heterogeneity in Phlebotomus sergenti and Phlebotomus similis (Diptera, Psychodidae): possible consequences in their ability to transmit Leishmania tropica. Int J Parasitol. 2002;32:1123–1131. PubMed

Depaquit J, Lienard E, Verzeaux-Griffon A, Ferte H, Bounamous A, Gantier JC, Hanafi HA, Jacobson RL, Maroli M, Moin-Vaziri V, Muller F, Ozbel Y, Svobodova M, Volf P, Leger N. Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA Epidemiological consequences. Infect Genet Evol. 2008;8:159–170. PubMed

Hamarsheh O, Presber W, Yaghoobi-Ershadi MR, Amro A, Al-Jawabreh A, Sawalha S, Al-Lahem A, Das ML, Guernaoui S, Seridi N, Dhiman RC, Hashiguchi Y, Grab J, Hassan M, Schonian G. Population structure and geographical subdivision of the Leishmania major vector Phlebotomus papatasi as revealed by microsatellite variation. Med Vet Entomol. 2009;23:69–77. PubMed

Dillon RJ, Ivens AC, Churcher C, Holroyd N, Quail MA, Rogers ME, Soares MB, Bonaldo MF, Casavant TL, Lehane MJ, Bates PA. Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship. Genomics. 2006;88:831–840. PubMed PMC

Oliveira F, Jochim RC, Valenzuela JG, Kamhawi S. Sand flies, Leishmania, and transcriptome-borne solutions. Parasitol Int. 2009;58:1–5. PubMed PMC

Hostomska J, Volfova V, Mu J, Garfield M, Rohousova I, Volf P, Valenzuela JG, Jochim RC. Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus. BMC Genomics. 2009;10:282. PubMed PMC

Rohousova I, Subrahmanyam S, Volfova V, Mu J, Volf P, Valenzuela JG, Jochim RC. Salivary Gland Transcriptomes and Proteomes of Phlebotomus tobbi and Phlebotomus sergenti, Vectors of Leishmaniasis. PLoS Negl Trop Dis. 2012;6:e1660. PubMed PMC

Ramalho-Ortigao M, Jochim RC, Anderson JM, Lawyer PG, Pham VM, Kamhawi S, Valenzuela JG. Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies. BMC Genomics. 2007;8:300. PubMed PMC

Jochim RC, Teixeira CR, Laughinghouse A, Mu JB, Oliveira F, Gomes RB, Elnaiem DE, Valenzuela JG. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics. 2008;9:15. PubMed PMC

Pitaluga AN, Beteille V, Lobo AR, Ortigao-Farias JR, Davila AM, Souza AA, Ramalho-Ortigão JM, Traub-Cseko YM. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Mol Genet Genomics. 2009;282:307–317. PubMed

Dostalova A, Votypka J, Favreau AJ, Barbian KD, Volf P, Valenzuela JG, Jochim RC. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies. BMC Genomics. 2011;12:223. PubMed PMC

Coutinho-Abreu IV, Ramalho-Ortigao M. Transmission blocking vaccines to control insect-borne diseases: a review. Mem Inst Oswaldo Cruz. 2010;105:1–12. PubMed

Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol. 2012;3:110. PubMed PMC

Rohousova I, Volf P. Sand fly saliva: effects on host immune response and Leishmania transmission. Folia Parasitol. 2006;53:161–171. PubMed

Mathias DK, Plieskatt JL, Armistead JS, Bethony JM, Bdul-Majid KB, McMillan A, Angov E, Aryee MJ, Zhan B, Gillespie P, Keegan B, Jariwala AR, Rezende W, Bottazzi ME, Scorpio DG, Hotez PJ, Dinglasan RR. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine. Infect Immun. 2012;80:1606–1614. PubMed PMC

Dinglasan RR, Jacobs-Lorena M. Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol. 2008;24:364–370. PubMed PMC

Dillon RJ, Lane RP. Bloodmeal Digestion in the midgut of Phlebotomus papatasi and Phlebotomus langeroni. Med Vet Entomol. 1993;7:225–232. PubMed

Telleria EL, de Araujo AP, Secundino NF, D`Avila-Levy CM, Traub-Cseko YM. Trypsin-Like Serine Proteases in Lutzomyia longipalpis - Expression, Activity and Possible Modulation by Leishmania infantum chagasi. PLoS One. 2010;5:e10697. PubMed PMC

Ramalho-Ortigao JM, Kamhawi S, Rowton ED, Ribeiro JMC, Valenzuela JG. Cloning and characterization of trypsin- and chymotrypsin-like proteases from the midgut of the sand fly vector Phlebotomus papatasi. Insect Biochem Mol Biol. 2003;33:163–171. PubMed

Telleria EL, Pitaluga AN, Ortigao-Farias JR, de Araujo APO, Ramalho-Ortigao JM, Traub-Cseko YM. Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis. Arch Insect Biochem Physiol. 2007;66:53–63. PubMed

Graf R, Briegel H. The synthetic pathway of trypsin in the mosquito Aedes aegypti L (Diptera, Culicidae) and in vitro stimulation in isolated midguts. Insect Biochem. 1989;19:129–137.

Barillas-Mury CV, Noriega FG, Wells MA. Early Trypsin Activity is Part of the Signal Transduction System that Activates Transcription of the Late Trypsin Gene in the Midgut of the Mosquito, Aedes aegypti. Insect Biochem Mol Biol. 1995;25:241–246. PubMed

Shatova SM, Shulga MA, Safjanova VM, Avakjan AA. Comparative electron microscope study of Leishmania major and L. tropica at the experimental infection of the sandfly Phlebotomus papatasi. Parazitologija. 1984;18:154–159. PubMed

Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrathu YM, Githure JI, Koech DK, Roberts CR. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae) Am J Trop Med Hyg. 1990;43:31–43. PubMed

Schlein Y, Jacobson RL. Resistance of Phlebotomus papatasi to infection with Leishmania donovani is modulated by components of the infective bloodmeal. Parasitology. 1998;117:467–473. PubMed

Adler S. Factors determining the behaviour of Leishmania sp. in sandflies. Harefuah. 1938;14:1–6.

Pimenta PFP, Modi GB, Pereira ST, Shahabuddin M, Sacks DL. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology. 1997;115:359–369. PubMed

Borovsky D, Schlein Y. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol. 1987;1:235–242. PubMed

Rogers ME, Hajmova M, Joshi MB, Sadlova J, Dwyer DM, Volf P, Bates PA. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice. Cell Microbiol. 2008;10:1363–1372. PubMed PMC

Volf P, Svobodova M, Dvorakova E. Bloodmeal digestion and Leishmania major infections in Phlebotomus duboscqi: effect of carbohydrates inhibiting midgut lectin activity. Med Vet Entomol. 2001;15:281–286. PubMed

Sant’Anna MR, Az-Albiter H, Mubaraki M, Dillon RJ, Bates PA. Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania. Parasit Vectors. 2009;2:62. PubMed PMC

Schlein Y, Romano H. Leishmania major and L. donovani: effects on proteolytic enzymes of Phlebotomus papatasi (Diptera: Psychodidae) Exp Parasitol. 1986;62:376–380. PubMed

Dillon RJ, Lane RP. Influence of Leishmania infection on blood-meal digestion in the sandflies Phlebotomus papatasi and P. langeroni. Parasitol Res. 1993;79:492–496. PubMed

Secundino N, Kimblin N, Peters NC, Lawyer P, Capul AA, Beverley SM, Turco SJ, Sacks D. Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cell Microbiol. 2010;12:906–918. PubMed PMC

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J. et al.The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–442. PubMed PMC

Eschenlauer SC, Faria MS, Morrison LS, Bland N, Ribeiro-Gomes FL, Dosreis GA, Coombs GH, Lima AP, Mottram JC. Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major. Cell Microbiol. 2009;11:106–120. PubMed PMC

Morrison LS, Goundry A, Faria MS, Tetley L, Eschenlauer SC, Westrop GD, Dostalova A, Volf P, Coombs GH, Lima AP, Mottram JC. Ecotin-like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation. Cell Microbio. 2012;10:5822. PubMed PMC

Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Ann Rev Microbiol. 2001;55:453–483. PubMed

Svarovska A, Ant TH, Seblova V, Jecna L, Beverley SM, Volf P. Leishmania major glycosylation mutants require phosphoglycans (lpg2-) but not lipophosphoglycan (lpg1-) for survival in permissive sand fly vectors. PLoS Negl Trop Dis. 2010;4:e580. PubMed PMC

Ramirez JL, Garver LS, Dimopoulos G. Challenges and approaches for mosquito targeted malaria control. Curr Mol Med. 2009;9:116–130. PubMed PMC

Lavazec C, Boudin C, Lacroix R, Bonnet S, Diop A, Thiberge S, Boisson B, Tahar R, Bourgouin C. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine. Infect Immun. 2007;75:1635–1642. PubMed PMC

Dinglasan RR, Kalume DE, Kanzok SM, Ghosh AK, Muratova O, Pandey A, Jacobs-Lorena M. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. Proc Natl Acad Sci USA. 2007;104:13461–13466. PubMed PMC

Lehane MJ. Peritrophic matrix structure and function. Annu Rev Entomol. 1997;42:525–550. PubMed

Jacobs-Lorena M, Oo MM. In: The biology of disease vectors. Beaty BJ, Marquardt WC, editor. Colorado: University Press of Colorado; 1996. The peritrophic matrix of insects; pp. 318–332.

Gemetchu T. The morphology and fine structure of the midgut and peritrophic membrane of the adult female, Phlebotomus longipes Parrot and Martin (Diptera: Psychodidae) Ann Trop Med Parasitol. 1974;68:111–124. PubMed

Secundino NFC, Eger-Mangrich I, Braga EM, Santoro MM, Pimenta PFP. Lutzomyia longipalpis peritrophic matrix: Formation, structure, and. chemical composition. J Med Entomol. 2005;42:928–938. PubMed

Sadlova J, Volf P. Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res. 2009;337:313–325. PubMed PMC

Walters LI, Irons KP, Guzman H, Tesh RB. Formation and composition of the peritrophic membrane in the sand fly, Phlebotomus perniciosus (Diptera, Psychodidae) J Med Entomol. 1993;30:179–198. PubMed

Devenport M, Alvarenga PH, Shao L, Fujioka H, Bianconi ML, Oliveira PL, Jacobs-Lorena M. Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry. 2006;45:9540–9549. PubMed

Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly-Doman M, Carucci DJ, Yates JR 3rd, Jacobs-Lorena M. The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol. 2009;39:125–134. PubMed PMC

Ramalho-Ortigao JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG, Dwyer DM, Sacks DL, Valenzuela JG. Characterization of a blood activated chitinolytic system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Mol Biol. 2005;14:703–712. PubMed

Ramalho-Ortigao JM, Traub-Cseko YM. Molecular characterization of Llchit1, a midgut chitinase cDNA from the leishmaniasis vector Lutzomyia longipalpis. Insect Biochem Mol Biol. 2003;33:279–287. PubMed

Walters LI, Irons KP, Modi GB, Tesh RB. Refractory barriers in the sandfly Phlebotomus papatasi (Diptera: Psychodidae) to infection with Leishmania panamensis. Am J Trop Med Hyg. 1992;46:211–228. PubMed

Schlein Y, Jacobson RL, Shlomai J. Chitinase secreted by Leishmania functions in the sandfly vector. Proc R Soc Lond. 1991;245:121–126. PubMed

Schlein Y, Jacobson RL. Haemoglobin inhibits the development of infective promastigotes and chitinase secretion in Leishmania major cultures. Parasitology. 1994;109:23–28. PubMed

Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS Negl Trop Dis. 2010;4:e901. PubMed PMC

Hao ZR, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S. Tsetse immune responses and trypanosome transmission: Implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci USA. 2001;98:12648–12653. PubMed PMC

Feldhaar H, Gross R. Immune reactions of insects on bacterial pathogens and mutualists. Microbes Infect. 2008;10:1082–1088. PubMed

Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, Svobodova M, Beverley SM, Späth G, Brun R, Pesson B, Bulet P. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun. 2004;72:7140–7146. PubMed PMC

Jaramillo-Gutierrez G, Rodrigues J, Ndikuyeze G, Povelones M, Molina-Cruz A, Barillas-Mury C. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes. BMC Microbiol. 2009;9:154–154. PubMed PMC

Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010;327:1644–1648. PubMed PMC

Telleria EL, Sant'Anna MR, Ortigao-Farias JR, Pitaluga AN, Dillon VM, Bates PA, Traub-Csekö YM, Dillon RJ. Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem. 2012;287:12985–12993. PubMed PMC

Diaz-Albiter H, Sant' Anna MR, Genta FA, Dillon RJ. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the phlebotomine sand fly Lutzomyia longipalpis. J Biol Chem. 2012;287:23995–24003. PubMed PMC

Bates PA. Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol. 2008;11:340–344. PubMed PMC

Pimenta PFP, Saraiva EMB, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ, Sacks DL. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA. 1994;91:9155–9159. PubMed PMC

Sacks D. The role of phosphoglycans in Leishmania-sand fly interactions. Mem Inst Oswaldo Cruz Suppl II. 2000;95:23. PubMed PMC

Wilson R, Bates MD, Dostalova A, Jecna L, Dillon RJ, Volf P, Bates PA. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis. 2010;4:e816. PubMed PMC

Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23:91–92. PubMed PMC

Turco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. PubMed

Lang T, Warburg A, Sacks DL, Croft SL, Lane RP. Transmission and scanning EM-immunogold labeling of Leishmania major lipophosphoglycan in the sandfly Phlebotomus papatasi. Eur J Cell Biol. 1991;55:362–372. PubMed

Pimenta PFP, Turco SJ, Mcconville MJ, Lawyer PG, Perkins PV, Sacks DL. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992;256:1812–1815. PubMed

Mcconville MJ, Turco SJ, Ferguson MAJ, Sacks DL. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 1992;11:3593–3600. PubMed PMC

Wallbanks KR, Ingram GA, Molyneux DH. The agglutination of erythrocytes and Leishmania parasites by sandfly gut extracts: evidence for lectin activity. Trop Med Parasitol. 1986;37:409–413. PubMed

Palanova L, Volf P. Carbohydrate-binding specificities and physico-chemical properties of lectins in various tissue of phlebotomine sandflies. Folia Parasitol. 1997;44:71–76. PubMed

Volf P, Killick-Kendrick R, Bates PA. Comparison of the haemagglutination activities in gut and head extracts of various species and geographical populations of phlebotomine sandflies. Ann Trop Med Parasitol. 1994;88:337–340. PubMed

Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG. A role for insect galectins in parasite survival. Cell. 2004;119:329–341. PubMed

Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Beverley SM. The role of phosphoglycans in Leishmania-sand fly interactions. Proc Nat Acad Sci USA. 2000;97:406–411. PubMed PMC

Cihakova J, Volf P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997;91:267–279. PubMed

Joshi PB, Sacks DL, Modi G, Mcmaster WR. Targeted gene deletion of Leishmania major genes encoding developmental stage-specific leishmanolysin (GP63) Mol Microbiol. 1998;27:519–530. PubMed

Dobson DE, Kamhawi S, Lawyer P, Turco SJ, Beverley SM, Sacks DL. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010;6:e1001185. PubMed PMC

Mahoney AB, Sacks DL, Saraiva E, Modi G, Turco SJ. Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani-sand fly interactions. Biochemistry. 1999;38:9813–9823. PubMed

Thomas JR, Mcconville MJ, Thomasoates JE, Homans SW, Ferguson MAJ, Gorin PAJ, Greai KD, Turco SJ. Refined Structure of the lipophosphoglycan of Leishmania donovani. J Biol Chem. 1992;267:6829–6833. PubMed

Kamhawi S, Modi GB, Pimenta PFP, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121:25–33. PubMed

Soares RPP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF, Turco SJ. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol. 2002;121:213–224. PubMed

Sacks DL, Pimenta PFP, Mcconville MJ, Schneider P, Turco SJ. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med. 1995;181:685–697. PubMed PMC

Myskova J, Svobodova M, Beverley SM, Volf P. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect. 2007;9:317–324. PubMed PMC

Rogers ME, Ilg T, Nikolaev AV, Ferguson MAJ, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. 2004;430:463–467. PubMed PMC

King DL, Turco SJ. A ricin agglutinin-resistant clone of Leishmania donovani deficient in lipophosphoglycan. Mol Biochem Parasitol. 1988;28:285–294. PubMed

Mukhopadhyay NK, Shome K, Saha AK, Hassell JR, Glew RH. Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. Biochem J. 1989;264:517–525. PubMed PMC

Kock NP, Gabius HJ, Schmitz J, Schottelius J. Receptors for carbohydrate ligands including heparin on the cell surface of Leishmania and other trypanosomatids. Trop Med Int Health. 1997;2:863–874. PubMed

Svobodova M, Bates PA, Volf P. Detection of lectin activity in Leishmania promastigotes and amastigotes. Acta Trop. 1997;68:23–35. PubMed

de Castro Cortes LM, de Souza Pereira MC, da Silva FS, Pereira BA, de Oliveira Junior FO, de Araujo Soares RO, Brazil RP, Toma L, Vicente CM, Nader HB, de Fatima Madeira M, Bello FJ, Alves CR. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro. Parasit Vectors. 2012;5:142. PubMed PMC

Cortes LM, Silva RM, Pereira BA, Guerra C, Zapata AC, Bello FJ, Finkelstein LC, Madeira MF, Brazil RP, Corte-Real S, Alves CR. Lulo cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae): a novel model to assay Leishmania spp. and vector interaction. Parasit Vectors. 2011;4:216. PubMed PMC

Cunningham ML, Titus RG, Turco SJ, Beverley SM. Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin. Science. 2001;292:285–287. PubMed

Besteiro S, Williams RAM, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem. 2006;281:11384–11396. PubMed

Sadlova J, Price HP, Smith BA, Votypka J, Volf P, Smith DF. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12:1765–1779. PubMed PMC

Ramalho-Ortigao JM, Pitaluga AN, Telleria EL, Marques C, Souza AA, Traub-Cseko YM. Cloning and characterization of a V-ATPase subunit C from the American visceral leishmaniasis vector Lutzomyia longipalpis modulated during development and blood ingestion. Mem Inst Oswaldo Cruz. 2007;102:509–515. PubMed

Killick-Kendrick R, Killick-Kendrick M, Tang Y, Bastien P. Metacyclic promastigotes of Leishmania in the salivary glands of experimentally infected phlebotomine sandflies. Parasite. 1996;3:55–60.

Sadlova J, Volf P. Occurrence of Leishmania major in sandfly urine. Parasitology. 1999;118:455–460. PubMed

Adler S, Theodor O. Investigations on Mediterranean Kala Azar. IX.--Feeding experiments with Phlebotomus perniciosus and other species on animals infected with Leishmania infantum. Proc Royal Soc London Series B-Biol Sci. 1935;116:516–542.

Warburg A, Schlein Y. The effect of post blood-meal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. Am J Trop Med Hyg. 1986;35:926–930. PubMed

Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behaviour results in enhanced transmission. PLoS Pathog. 2007;3:818–825. PubMed PMC

Schlein Y, Jacobson RL, Messer G. Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. Proc Natl Acad Sci USA. 1992;89:9944–9948. PubMed PMC

Volf P, Hajmova M, Sadlova J, Votypka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34:1221–1227. PubMed

Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, Lawyer P, Fay MP, Kamhawi S, Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci USA. 2008;105:10125–10130. PubMed PMC

Maia C, Seblova V, Sadlova J, Votypka J, Volf P. Experimental transmission of Leishmania infantum by two major vectors: a comparison between a viscerotropic and a dermotropic strain. PLoS Negl Trop Dis. 2011;5:e1181. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Azadirachtin disrupts ecdysone signaling and alters sand fly immunity

. 2024 Dec 20 ; 17 (1) : 526. [epub] 20241220

A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus

. 2024 Dec ; 18 (12) : e0012767. [epub] 20241227

Stability and suitability of housekeeping genes in phlebotomine sand flies

. 2024 Oct 07 ; 14 (1) : 23353. [epub] 20241007

Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions

. 2024 Aug 13 ; 15 (1) : 6960. [epub] 20240813

Effect of Phlebotomus papatasi on the fitness, infectivity and antimony-resistance phenotype of antimony-resistant Leishmania major Mon-25

. 2024 Aug ; 25 () : 100554. [epub] 20240624

Leishmania spp. in equids and their potential vectors in endemic areas of canine leishmaniasis

. 2024 Jul ; 18 (7) : e0012290. [epub] 20240718

Steppe lemmings and Chinese hamsters as new potential animal models for the study of the Leishmania subgenus Mundinia (Kinetoplastida: Trypanosomatidae)

. 2024 May ; 18 (5) : e0011897. [epub] 20240513

Phlebotomine sand fly (Diptera: Phlebotominae) diversity in the foci of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan: 50 years on

. 2024 Mar 25 ; 123 (3) : 170. [epub] 20240325

Whole cell reconstructions of Leishmania mexicana through the cell cycle

. 2024 Feb ; 20 (2) : e1012054. [epub] 20240228

Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice

. 2024 Jan 19 ; 108 (1) : 145. [epub] 20240119

Comparative genomics of Leishmania donovani progeny from genetic crosses in two sand fly species and impact on the diversity of diagnostic and vaccine candidates

. 2024 Jan ; 18 (1) : e0011920. [epub] 20240131

Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania

. 2023 ; 14 () : 1162596. [epub] 20231102

Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector

. 2023 May 10 ; 12 () : . [epub] 20230510

RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection

. 2023 ; 14 () : 1182141. [epub] 20230509

Experimental feeding of Sergentomyia minuta on reptiles and mammals: comparison with Phlebotomus papatasi

. 2023 Apr 13 ; 16 (1) : 126. [epub] 20230413

Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage

. 2023 Mar 07 ; 120 (10) : e2220828120. [epub] 20230227

Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania?

. 2023 Feb 03 ; 12 (2) : . [epub] 20230203

Phenotypical Differences between Leishmania (Leishmania) amazonensis PH8 and LV79 Strains May Impact Survival in Mammal Host and in Phlebotomine Sand Flies

. 2023 Jan 22 ; 12 (2) : . [epub] 20230122

Leishmania tarentolae: A new frontier in the epidemiology and control of the leishmaniases

. 2022 Sep ; 69 (5) : e1326-e1337. [epub] 20220803

Experimental infections of sand flies and geckos with Leishmania (Sauroleishmania) adleri and Leishmania (S.) hoogstraali

. 2022 Aug 11 ; 15 (1) : 289. [epub] 20220811

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace