Azadirachtin disrupts ecdysone signaling and alters sand fly immunity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101067053
HORIZON EUROPE Marie Sklodowska-Curie Actions
2021-1-IT02-KA131-HED-00000-6888
Erasmus+
PE00000007 INFACT
NextGeneration EU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases
CePaViP (16_019/0000759)
European Regional Development Fund (ERDF)
PubMed
39707409
PubMed Central
PMC11662615
DOI
10.1186/s13071-024-06589-8
PII: 10.1186/s13071-024-06589-8
Knihovny.cz E-zdroje
- Klíčová slova
- Phlebotomus perniciosus, Antimicrobial peptides, Azadirachtin, Ecdysone,
- MeSH
- antimikrobiální peptidy genetika farmakologie MeSH
- ekdyson * MeSH
- hmyz - vektory účinky léků genetika parazitologie imunologie MeSH
- hmyzí proteiny genetika metabolismus MeSH
- larva * účinky léků imunologie genetika MeSH
- limoniny * farmakologie MeSH
- Phlebotomus * účinky léků genetika parazitologie imunologie MeSH
- shazování tělního pokryvu účinky léků MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimikrobiální peptidy MeSH
- azadirachtin MeSH Prohlížeč
- ekdyson * MeSH
- hmyzí proteiny MeSH
- limoniny * MeSH
BACKGROUND: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS: Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS: Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS: These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
Department of Biology University of Naples Federico 2 Naples Italy
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276. PubMed PMC
Telleria EL, Martins-da-Silva A, Tempone AJ, Traub-Csekö YM. Leishmania, microbiota and sand fly immunity. Parasitology. 2018;145:1336–53. PubMed PMC
Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol. 2022;5:305. PubMed PMC
Ferrandon D, Imler J-L, Hetru C, Hoffmann JA. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol. 2007;7:862–74. PubMed
Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun. 2004;72:7140–6. PubMed PMC
Tinoco-Nunes B, Telleria EL, da Silva-Neves M, Marques C, Azevedo-Brito DA, Pitaluga AN, et al. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasit Vectors. 2016;9:222. PubMed PMC
Telleria EL, Tinoco-Nunes B, Leštinová T, de Avellar LM, Tempone AJ, Pitaluga AN, et al. Lutzomyia longipalpis antimicrobial peptides: differential expression during development and potential involvement in vector interaction with microbiota and Leishmania. Microorganisms. 2021;9:1271. PubMed PMC
Meister S, Agianian B, Turlure F, Relógio A, Morlais I, Kafatos FC, et al. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog. 2009;5:e1000542. PubMed PMC
Vieira C, Waniek P, Castro D, Mattos D, Moreira O, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors. 2016;9:119. PubMed PMC
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune reactions of vector insects to parasites and pathogens. Microorganisms. 2024;12:568. PubMed PMC
Kykalová B, Tichá L, Volf P, Loza TE. Phlebotomus papatasi antimicrobial peptides in larvae and females and a gut-specific defensin upregulated by Leishmania major infection. Microorganisms. 2021;9:2307. PubMed PMC
Kozlova T, Thummel CS. Steroid regulation of postembryonic development and reproduction in Drosophila. Trends Endocrinol Metab. 2000;11:276–80. PubMed
Riddiford LM, Hiruma K, Zhou X, Nelson CA. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol. 2003;33:1327–38. PubMed
Matsui H, Kakei M, Iwami M, Sakurai S. Glucose oxidase prevents programmed cell death of the silkworm anterior silk gland through hydrogen peroxide production. FEBS J. 2011;278:776–85. PubMed
Dimarcq J-L, Imler J-L, Lanot R, Alan B, Ezekowitz R, Hoffmann JA, et al. Treatment of l(2)mbn Drosophila tumorous blood cells with the steroid hormone ecdysone amplifies the inducibility of antimicrobial peptide gene expression. Insect Biochem Mol Biol. 1997;27:877–86. PubMed
Rus F, Flatt T, Tong M, Aggarwal K, Okuda K, Kleino A, et al. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO J. 2013;32:1626–38. PubMed PMC
Tan KL, Vlisidou I, Wood W. Ecdysone mediates the development of immunity in the Drosophila embryo. Curr Biol. 2014;24:1145–52. PubMed PMC
Wang J, Chen L, Tang L, Zhao H, Liu X, Wang Y. 20-Hydroxyecdysone transcriptionally regulates humoral immunity in the fat body of Helicoverpa armigera. Insect Mol Biol. 2014;23:842–56. PubMed
Vieira CS, Figueiredo MB, da Moraes CS, Pereira SB, Dyson P, Mello CB, et al. Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. Dev Comp Immunol. 2021;114:103864. PubMed
Regan JC, Brandão AS, Leitão AB, Mantas Dias ÂR, Sucena É, Jacinto A, et al. Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila. PLoS Pathog. 2013;9:e1003720. PubMed PMC
de Azambuja P, Garcia ES, Ratcliffe NA, David WJ. Immune-depression in Rhodnius prolixus induced by the growth inhibitor, azadirachtin. J Insect Physiol. 1991;37:771–7.
Figueiredo MB, Castro DP, Nogueira NFS, Garcia ES, Azambuja P. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis. J Insect Physiol. 2006;52:711–6. PubMed
Smith RC, King JG, Tao D, Zeleznik OA, Brando C, Thallinger GG, et al. Molecular profiling of phagocytic immune cells in Anopheles gambiae reveals integral roles for hemocytes in mosquito innate immunity. Mol Cell Proteomics. 2016;15:3373–87. PubMed PMC
Werling K, Shaw WR, Itoe MA, Westervelt KA, Marcenac P, Paton DG, et al. Steroid hormone function controls non-competitive Plasmodium development in Anopheles. Cell. 2019;177:315–25.e14. PubMed PMC
Reynolds RA, Kwon H, Smith RC. 20-Hydroxyecdysone primes innate immune responses that limit bacterial and malarial parasite survival in Anopheles gambiae. mSphere. 2020; 5(2):e00983-19. PubMed PMC
Telleria EL, Sant’Anna MRV, Ortigão-Farias JR, Pitaluga AN, Dillon VM, Bates PA, et al. Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem. 2012;287:12985–93. PubMed PMC
Louradour I, Ghosh K, Inbar E, Sacks DL. CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the immune deficiency pathway impacts vector competence for Leishmania major. mBio. 2019; 10(4):e01941-19. PubMed PMC
Chen X, Wang J, Yue W, Huang S, Chen J, Chen Y, et al. Structure and function of the alternatively spliced isoforms of the ecdysone receptor gene in the Chinese mitten crab. Eriocheir sinensis Sci Rep. 2017;7:12993. PubMed PMC
Mazina MY, Vorobyeva NE. Mechanisms of transcriptional regulation of ecdysone response. Vavilov J Genet Breed. 2019;23:212–8.
Uyehara CM, McKay DJ. Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci. 2019;116:9893–902. PubMed PMC
Maletta M, Orlov I, Roblin P, Beck Y, Moras D, Billas IML, et al. The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat Commun. 2014;5:4139. PubMed
Shlyueva D, Stelzer C, Gerlach D, Yáñez-Cuna JO, Rath M, Boryń ŁM, et al. Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin. Mol Cell. 2014;54:180–92. PubMed
Burtis KC, Thummel CS, Jones CW, Karim FD, Hogness DS. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell. 1990;61:85–99. PubMed
Karim FD, Thummel CS. Ecdysone coordinates the timing and amounts of E74A and E74B transcription in Drosophila. Genes Dev. 1991;5:1067–79. PubMed
Ashburner M, Richards G. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. Dev Biol. 1976;54:241–55. PubMed
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors. 2021;14:86. PubMed PMC
He Y-Z, Aksoy E, Ding Y, Raikhel AS. Hormone-dependent activation and repression of microRNAs by the ecdysone receptor in the dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci. 2021;118(26):e2102417118. PubMed PMC
Rembold H. The Azadirachtins: potent insect growth inhibitors. Mem Inst Oswaldo Cruz. 1987;82:61–6.
Garcia ES, Feder D, Gomes JEPL, de Azambuja P. Effects of precocene and azadirachtin in Rhodnius prolixus: some data on development and reproduction. Mem Inst Oswaldo Cruz. 1987;82:67–73. PubMed
Morgan ED. Azadirachtin, a scientific gold mine. Bioorg Med Chem. 2009;17:4096–105. PubMed
de Oliveira DAB, da Silva AV, dos Santos NE. Molecular docking of Azadirachtin in nuclear ecdysone receptor. Curr Phys Chem. 2019;9:50–7.
Coelho CAA, de Souza NA, Feder MD, da Silva CE, de Garcia ES, Azambuja P, et al. Effects of azadirachtin on the development and mortality of Lutzomyia longipalpis larvae (Diptera: Psychodidae: Phlebotominae). J Med Entomol. 2006;43:262–6. PubMed
Cortez MR, Provençano A, Silva CE, Mello CB, Zimmermann LT, Schaub GA, et al. Trypanosoma cruzi: Effects of azadirachtin and ecdysone on the dynamic development in Rhodnius prolixus larvae. Exp Parasitol. 2012;131:363–71. PubMed
Chaudhary S. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front Plant Sci. 2017;8:610. PubMed PMC
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–47. PubMed
Dvorak V, Shaw J, Volf P. Parasite biology: the vectors. In: Bruschi F, Gradoni L, editors. The leishmaniases: old neglected tropical diseases. Cham: Springer International Publishing; 2018. p. 31–77.
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:S1-9. PubMed
Petrella V, Aceto S, Musacchia F, Colonna V, Robinson M, Benes V, et al. De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics. 2015;16:847. PubMed PMC
Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30:503–12. PubMed
Rasmussen R. Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K-I, editors. Rapid cycle real-time PCR. Berlin: Springer; 2001. p. 21–34.
Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 2003;31:e122. PubMed PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:45e–45. PubMed PMC
Kilani-Morakchi S, Morakchi-Goudjil H, Sifi K. Azadirachtin-based insecticide: overview, risk assessments, and future directions. Front Agron. 2021;3:676208.
Lai D, Jin X, Wang H, Yuan M, Xu H. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin. J Biotechnol. 2014;185:51–6. PubMed
Boulahbel B, Aribi N, Kilani-Morakchi S, Soltani N. Insecticidal activity of azadirachtin on Drosophila melanogaster and recovery of normal status by exogenous 20-hydroxyecdysone. Afr Entomol. 2015;23:224–33.
Zhang J, Liu H, Sun Z, Xie J, Zhong G, Yi X. Azadirachtin induced apoptosis in the prothoracic gland in Bombyx mori and a pronounced Ca2+ release effect in Sf9 cells. Int J Biol Sci. 2017;13:1532–9. PubMed PMC
Nathan SS, Kalaivani K, Murugan K. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop. 2005;96:47–55. PubMed
Dembo EG, Abay SM, Dahiya N, Ogboi JS, Christophides GK, Lupidi G, et al. Impact of repeated NeemAzal®-treated blood meals on the fitness of Anopheles stephensi mosquitoes. Parasit Vectors. 2015;8:94. PubMed PMC
de Garcia ES, Rembold H. Effects of azadirachtin on ecdysis of Rhodnius prolixus. J Insect Physiol. 1984;30:939–41.
Smith SL, Mitchell MJ. Effects of azadirachtin on insect cytochrome P-450 dependent ecdysone 20-monooxygenase activity. Biochem Biophys Res Commun. 1988;154:559–63. PubMed
Lin T, Liu Q, Chen J. Identification of differentially expressed genes in Monochamus alternatus digested with azadirachtin. Sci Rep. 2016;6:33484. PubMed PMC
Shu B, Lin Y, Qian G, Cai X, Liu L, Lin J. Integrated miRNA and transcriptome profiling to explore the molecular mechanism of Spodoptera frugiperda larval midgut in response to azadirachtin exposure. Pestic Biochem Physiol. 2022;187:105192. PubMed
Gauhar Z, Sun LV, Hua S, Mason CE, Fuchs F, Li T-R, et al. Genomic mapping of binding regions for the Ecdysone receptor protein complex. Genome Res. 2009;19:1006–13. PubMed PMC
Bodai L, Zsindely N, Gáspár R, Kristó I, Komonyi O, Boros IM. Ecdysone induced gene expression is associated with acetylation of histone H3 lysine 23 in Drosophila melanogaster. PLoS ONE. 2012;7:e40565. PubMed PMC
Qian Y, Dominado N, Zoller R, Ng C, Kudyba K, Siddall NA, et al. Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster. Dev Biol. 2014;394:217–27. PubMed
Cheng D, Cheng T, Yang X, Zhang Q, Fu J, Feng T, et al. The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm. Epigenet Chromatin. 2018;11:48. PubMed PMC
Sam S, Leise W, Keiko HD. The serpent gene is necessary for progression through the early stages of fat-body development. Mech Dev. 1996;60:197–205. PubMed
Rehorn K-P, Thelen H, Michelson AM, Reuter R. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development. 1996;122:4023–31. PubMed
Petersen U-M, Kadalayil L, Rehorn K-P, Hoshizaki DK, Reuter R, Engström Y. Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO J. 1999;18:4013–22. PubMed PMC
Garcia ES, Luz N, Azambuja P, Rembold H. Azadirachtin depresses the release of prothoracicotropic hormone in Rhodnius prolixus larvae: evidence from head transplantations. J Insect Physiol. 1990;36:679–82.
Simon AF, Shih C, Mack A, Benzer S. Steroid Control of Longevity in Drosophila melanogaster. Science. 1979;2003:1407–10. PubMed
Tan A, Palli SR. Edysone receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum. Mol Cell Endocrinol. 2008;291:42–9. PubMed PMC
Yu J, Song H, Wang Y, Liu Z, Wang H, Xu B. 20-Hydroxyecdysone upregulates Ecdysone Receptor (ECR) gene to promote pupation in the honeybee, Apis mellifera Ligustica. Integr Comp Biol. 2023;63:288–303. PubMed
Flatt T, Heyland A, Rus F, Porpiglia E, Sherlock C, Yamamoto R, et al. Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. J Exp Biol. 2008;211:2712–24. PubMed PMC
Thummel CS. Ecdysone-regulated puff genes 2000. Insect Biochem Mol Biol. 2002;32:113–20. PubMed
Zipper L, Jassmann D, Burgmer S, Görlich B, Reiff T. Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the PPARγ-homolog Eip75B in Drosophila. Elife. 2020;9:e55795. PubMed PMC
Kleino A, Valanne S, Ulvila J, Kallio J, Myllymäki H, Enwald H, et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 2005;24:3423–34. PubMed PMC
Xiong X-P, Kurthkoti K, Chang K-Y, Li J-L, Ren X, Ni J-Q, et al. miR-34 modulates innate immunity and ecdysone signaling in Drosophila. PLoS Pathog. 2016;12:e1006034. PubMed PMC
Tingvall TÖ, Roos E, Engström Y. The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc Natl Acad Sci. 2001;98:3884–8. PubMed PMC
Jung S-H, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 2005;132:2521–33. PubMed
Lebo MS, Sanders LE, Sun F, Arbeitman MN. Somatic, germline and sex hierarchy regulated gene expression during Drosophila metamorphosis. BMC Genomics. 2009;10:80. PubMed PMC
Senger K, Harris K, Levine M. GATA factors participate in tissue-specific immune responses in Drosophila larvae. Proc Natl Acad Sci. 2006;103:15957–62. PubMed PMC
Bahia AC, Kubota MS, Souza-Neto JA, Koerich LB, Barletta AB, Araújo HRC, et al. An Anopheles aquasalis GATA factor Serpent is required for immunity against Plasmodium and bacteria. PLoS Negl Trop Dis. 2018;12:e0006785. PubMed PMC
Vomáčková Kykalová B, Sassù F, Volf P, Telleria EL. RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection. Front Physiol. 2023;14:1182141. PubMed PMC