Phlebotomus papatasi Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by Leishmania major Infection

. 2021 Nov 06 ; 9 (11) : . [epub] 20211106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835433

Grantová podpora
1380120 Grant Agency of Charles University (GAUK)
GACR21-15700S Czech Science Foundation
16_019/0000759 ERD Funds, project CePaViP
CZ.02.2.69/0.0/0.0/16_027/0008495 International Mobility of Researchers at Charles University

Odkazy

PubMed 34835433
PubMed Central PMC8625375
DOI 10.3390/microorganisms9112307
PII: microorganisms9112307
Knihovny.cz E-zdroje

Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.

Zobrazit více v PubMed

Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

WHO Leishmaniasis. [(accessed on 15 September 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.

Hamarsheh O. Distribution of Leishmania major zymodemes in relation to populations of Phlebotomus papatasi sand flies. Parasit. Vectors. 2011;4:9. doi: 10.1186/1756-3305-4-9. PubMed DOI PMC

Dostalova A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit. Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC

Bates P.A., Depaquit J., Galati E.A., Kamhawi S., Maroli M., McDowell M.A., Picado A., Ready P.D., Salomon O.D., Shaw J.J., et al. Recent advances in phlebotomine sand fly research related to leishmaniasis control. Parasit. Vectors. 2015;8:131. doi: 10.1186/s13071-015-0712-x. PubMed DOI PMC

Schlein Y., Polacheck I., Yuval B. Mycoses, bacterial infections and antibacterial activity in sandflies (Psychodidae) and their possible role in the transmission of leishmaniasis. Pt 1Parasitology. 1985;90:57–66. doi: 10.1017/S0031182000049015. PubMed DOI

Dillon R.J., el Kordy E., Shehata M., Lane R.P. The prevalence of a microbiota in the digestive tract of Phlebotomus papatasi. Ann. Trop. Med. Parasitol. 1996;90:669–673. doi: 10.1080/00034983.1996.11813102. PubMed DOI

Guernaoui S., Garcia D., Gazanion E., Ouhdouch Y., Boumezzough A., Pesson B., Fontenille D., Sereno D. Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae) J. Vector Ecol. 2011;36:S144–S147. doi: 10.1111/j.1948-7134.2011.00124.x. PubMed DOI

Akhoundi M., Bakhtiari R., Guillard T., Baghaei A., Tolouei R., Sereno D., Toubas D., Depaquit J., Abyaneh M.R. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran. PLoS ONE. 2012;7:e50259. doi: 10.1371/journal.pone.0050259. PubMed DOI PMC

Mukhopadhyay J., Braig H.R., Rowton E.D., Ghosh K. Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World. PLoS ONE. 2012;7:e35748. doi: 10.1371/journal.pone.0035748. PubMed DOI PMC

Maleki-Ravasan N., Oshaghi M.A., Afshar D., Arandian M.H., Hajikhani S., Akhavan A.A., Yakhchali B., Shirazi M.H., Rassi Y., Jafari R., et al. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasit. Vectors. 2015;8:63. doi: 10.1186/s13071-014-0517-3. PubMed DOI PMC

Karakuş M., Karabey B., Orçun Kalkan Ş., Özdemir G., Oğuz G., Erişöz Kasap Ö., Alten B., Töz S., Özbel Y. Midgut Bacterial Diversity of Wild Populations of Phlebotomus (P.) papatasi, the Vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Turkey. Sci. Rep. 2017;7:14812. doi: 10.1038/s41598-017-13948-2. PubMed DOI PMC

Papadopoulos C., Karas P.A., Vasileiadis S., Ligda P., Saratsis A., Sotiraki S., Karpouzas D.G. Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens. 2020;9:428. doi: 10.3390/pathogens9060428. PubMed DOI PMC

Telleria E.L., Martins-Da-Silva A., Tempone A.J., Traub-Cseko Y.M. Leishmania, microbiota and sand fly immunity. Parasitology. 2018;145:1336–1353. doi: 10.1017/S0031182018001014. PubMed DOI PMC

De Gregorio E., Spellman P.T., Tzou P., Rubin G.M., Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 2002;21:2568–2579. doi: 10.1093/emboj/21.11.2568. PubMed DOI PMC

Telleria E.L., Sant’Anna M.R.V., Ortigão-Farias J.R., Pitaluga A.N., Dillon V.M., Bates P.A., Traub-Csekö Y.M., Dillon R.J. Caspar-like gene depletion reduces leishmania infection in sand fly host Lutzomyia longipalpis. J. Biol. Chem. 2012;287:12985–12993. doi: 10.1074/jbc.M111.331561. PubMed DOI PMC

Louradour I., Ghosh K., Inbar E., Sacks D.L. CRISPR/Cas9 mutagenesis in Phlebotomus papatasi: The immune deficiency pathway impacts vector competence for Leishmania major. mBio. 2019;10:e01941-19. doi: 10.1128/mBio.01941-19. PubMed DOI PMC

Boulanger N., Lowenberger C., Volf P., Ursic R., Sigutova L., Sabatier L., Svobodova M., Beverley S.M., Spath G., Brun R., et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect. Immun. 2004;72:7140–7146. doi: 10.1128/IAI.72.12.7140-7146.2004. PubMed DOI PMC

Telleria E.L., Tinoco-Nunes B., Leštinová T., de Avellar L.M., Tempone A.J., Pitaluga A.N., Volf P., Traub-Csekö Y.M. Lutzomyia longipalpis Antimicrobial Peptides: Differential Expression during Development and Potential Involvement in Vector Interaction with Microbiota and Leishmania. Microorganisms. 2021;9:1271. doi: 10.3390/microorganisms9061271. PubMed DOI PMC

Blank V., Kourilsky P., Israël A. NF-κB and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem. Sci. 1992;17:135–140. doi: 10.1016/0968-0004(92)90321-Y. PubMed DOI

Tinoco-Nunes B., Telleria E.L., Da Silva-Neves M., Marques C., Azevedo-Brito D.A., Pitaluga A.N., Traub-Csekö Y.M. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasit. Vectors. 2016;9:222. doi: 10.1186/s13071-016-1507-4. PubMed DOI PMC

Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Whelan S., Goldman N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 2001;18:691–699. doi: 10.1093/oxfordjournals.molbev.a003851. PubMed DOI

Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI

Lawyer P., Killick-Kendrick M., Rowland T., Rowton E., Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC

Kelly P.H., Bahr S.M., Serafim T.D., Ajami N.J., Petrosino J.F., Meneses C., Kirby J.R., Valenzuela J.G., Kamhawi S., Wilson M.E. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio. 2017;8:e01121-16. doi: 10.1128/mBio.01121-16. PubMed DOI PMC

Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47. PubMed DOI

Benkova I., Volf P. Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae) J. Med. Entomol. 2007;44:150–154. doi: 10.1603/0022-2585(2007)44[150:EOTOMO]2.0.CO;2. PubMed DOI

Myskova J., Votypka J., Volf P. Leishmania in Sand Flies: Comparison of Quantitative Polymerase Chain Reaction with Other Techniques to Determine the Intensity of Infection. J. Med. Entomol. 2008;45:133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI

Sadlova J., Price H.P., Smith B.A., Votypka J., Volf P., Smith D.F. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell. Microbiol. 2010;12:1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x. PubMed DOI PMC

Rasband W. ImageJ Website. [(accessed on 10 August 2019)]; Available online: https://imagej.nih.gov/ij/

Walters L.L., Chaplin G.L., Modi G.B., Tesh R.B. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): A natural host-parasite association. Am. J. Trop. Med. Hyg. 1989;40:19–39. doi: 10.4269/ajtmh.1989.40.19. PubMed DOI

Nadkarni M.A., Martin F.E., Jacques N.A., Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–266. doi: 10.1099/00221287-148-1-257. PubMed DOI

Di-Blasi T., Lobo A.R., Nascimento L.M., Córdova-Rojas J.L., Pestana K., Marín-Villa M., Tempone A.J., Telleria E.L., Ramalho-Ortigão M., McMahon-Pratt D., et al. The flagellar protein FLAG1/SMP1 is a candidate for leishmania-sand fly interaction. Vector-Borne Zoonotic Dis. 2015;15:202–209. doi: 10.1089/vbz.2014.1736. PubMed DOI PMC

Graef I.A., Gastier J.M., Francke U., Crabtree G.R. Evolutionary relationships among rel domains indicate functional diversification by recombination. Proc. Natl. Acad. Sci. USA. 2001;98:5740–5745. doi: 10.1073/pnas.101602398. PubMed DOI PMC

Moorthy A.K., Huang D.B., Wang V.Y.F., Vu D., Ghosh G. X-ray Structure of a NF-κB p50/RelB/DNA Complex Reveals Assembly of Multiple Dimers on Tandem κB Sites. J. Mol. Biol. 2007;373:723–734. doi: 10.1016/j.jmb.2007.08.039. PubMed DOI PMC

Dushay M.S., Åsling B., Hultmark D. Origins of immunity: Relish, a compound rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA. 1996;93:10343–10347. doi: 10.1073/pnas.93.19.10343. PubMed DOI PMC

Huguet C., Crepieux P., Laudet V. Rel/NF-kB transcription factors and IkB inhibitors: Evolution from a unique common ancestor. Oncogene. 1997;15:2965–2974. doi: 10.1038/sj.onc.1201471. PubMed DOI

Gilmore T.D., Wolenski F.S. NF-κB: Where did it come from and why? Immunol. Rev. 2012;246:14–35. doi: 10.1111/j.1600-065X.2012.01096.x. PubMed DOI

Shi Z., Liang H., Hou Y. Functional analysis of a NF-κB transcription factor in the immune defense of Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae) Bull. Entomol. Res. 2017;107:251–260. doi: 10.1017/S0007485316000845. PubMed DOI

Mapalo M.A., Arakawa K., Baker C.M., Persson D.K., Mirano-Bascos D., Giribet G. The Unique Antimicrobial Recognition and Signaling Pathways in Tardigrades with a Comparison Across Ecdysozoa. G3 Genes Genomes Genet. 2020;10:1137–1148. doi: 10.1534/g3.119.400734. PubMed DOI PMC

Hedengren M., Borge K., Hultmark D. Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem. Biophys. Res. Commun. 2000;279:574–581. doi: 10.1006/bbrc.2000.3988. PubMed DOI

Buonocore F., Fausto A.M., Pelle G.D., Roncevic T., Gerdol M., Picchietti S. Attacins: A Promising Class of Insect Antimicrobial Peptides. Antibiotics. 2021;10:212. doi: 10.3390/antibiotics10020212. PubMed DOI PMC

Bulet P., Stöcklin R., Menin L. Anti-microbial peptides: From invertebrates to vertebrates. Immunol. Rev. 2004;198:169–184. doi: 10.1111/j.0105-2896.2004.0124.x. PubMed DOI

Wei L., Mu L., Wang Y., Bian H., Li J., Lu Y., Han Y., Liu T., Lv J., Feng C., et al. Purification and characterization of a novel defensin from the salivary glands of the black fly, Simulium bannaense. Parasit. Vectors. 2015;8:71. doi: 10.1186/s13071-015-0669-9. PubMed DOI PMC

Freitak D., Wheat C.W., Heckel D.G., Vogel H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol. 2007;5:56. doi: 10.1186/1741-7007-5-56. PubMed DOI PMC

Heerman M., Weng J.L., Hurwitz I., Durvasula R., Ramalho-Ortigao M. Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut. PLoS Negl. Trop. Dis. 2015;9:e0003923. doi: 10.1371/journal.pntd.0003923. PubMed DOI PMC

Douglas A.E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009;23:38–47. doi: 10.1111/j.1365-2435.2008.01442.x. DOI

De Melo Ximenes M.d.F.F., Maciel J.C., Jerônimo S.M.B. Characteristics of the Biological Cycle of Lutzomyia evandroi Costa Lima & Antunes, 1936 (Diptera: Psychodidae) under Experimental Conditions. Mem. Inst. Oswaldo Cruz. 2001;96:883–886. doi: 10.1590/S0074-02762001000600025. PubMed DOI

Feliciangeli M.D. Natural breeding places of phlebotomine sandflies. Med. Vet. Entomol. 2004;18:71–80. doi: 10.1111/j.0269-283X.2004.0487.x. PubMed DOI

Marayati B.F., Schal C., Ponnusamy L., Apperson C.S., Rowland T.E., Wasserberg G. Attraction and oviposition preferences of Phlebotomus papatasi (Diptera: Psychodidae), vector of Old-World cutaneous leishmaniasis, to larval rearing media. Parasit. Vectors. 2015;8:663. doi: 10.1186/s13071-015-1261-z. PubMed DOI PMC

Adler S., Theodor O. Transmission of Disease Agents by Phlebotomine Sand Flies. Annu. Rev. Entomol. 1957;2:203–226. doi: 10.1146/annurev.en.02.010157.001223. DOI

Volf P., Kiewegova A., Nemec A. Bacterial colonisation in the gut of Phlebotomus duboseqi (Diptera: Psychodidae): Transtadial passage and the role of female diet. Folia Parasitol. 2002;49:73–77. doi: 10.14411/fp.2002.014. PubMed DOI

Dey R., Joshi A.B., Oliveira F., Pereira L., Guimaraes-Costa A.B., Serafim T.D., de Castro W., Coutinho-Abreu I.V., Bhattacharya P., Townsend S., et al. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe. 2018;23:134–143.e6. doi: 10.1016/j.chom.2017.12.002. PubMed DOI PMC

Sacks D.L. Leishmania-sand fly interactions controlling species-specific vector competence. Cell. Microbiol. 2001;3:189–196. doi: 10.1046/j.1462-5822.2001.00115.x. PubMed DOI

Pruzinova K., Sadlova J., Seblova V., Homola M., Votypka J., Volf P. Comparison of Bloodmeal Digestion and the Peritrophic Matrix in Four Sand Fly Species Differing in Susceptibility to Leishmania donovani. PLoS ONE. 2015;10:e0128203. doi: 10.1371/journal.pone.0128203. PubMed DOI PMC

Coutinho-Abreu I.V., Sharma N.K., Robles-Murguia M., Ramalho-Ortigao M. Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS Negl. Trop. Dis. 2010;4:e901. doi: 10.1371/journal.pntd.0000901. PubMed DOI PMC

Atayde V.D., Aslan H., Townsend S., Hassani K., Kamhawi S., Olivier M. Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. Cell Rep. 2015;13:957–967. doi: 10.1016/j.celrep.2015.09.058. PubMed DOI PMC

Corrales R.M., Sereno D., Mathieu-Daude F. Deciphering the Leishmania exoproteome: What we know and what we can learn. FEMS Immunol. Med. Microbiol. 2010;58:27–38. doi: 10.1111/j.1574-695X.2009.00608.x. PubMed DOI

Forrest D.M., Batista M., Marchini F.K., Tempone A.J., Traub-Csekö Y.M. Proteomic analysis of exosomes derived from procyclic and metacyclic-like cultured Leishmania infantum chagasi. J. Proteom. 2020;227:103902. doi: 10.1016/j.jprot.2020.103902. PubMed DOI

Kingsolver M.B., Hardy R.W. Making connections in insect innate immunity. Proc. Natl. Acad. Sci. USA. 2012;109:18639–18640. doi: 10.1073/pnas.1216736109. PubMed DOI PMC

Huang Z., Kingsolver M.B., Avadhanula V., Hardy R.W. An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication. J. Virol. 2013;87:4272–4280. doi: 10.1128/JVI.03360-12. PubMed DOI PMC

Telleria E.L., Sant’Anna M.R.V., Alkurbi M.O., Pitaluga A.N., Dillon R.J., Traub-Csekö Y.M. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasit. Vectors. 2013;6:12. doi: 10.1186/1756-3305-6-12. PubMed DOI PMC

Sloan M.A., Sadlova J., Lestinova T., Sanders M.J., Cotton J.A., Volf P., Ligoxygakis P. The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasit. Vectors. 2021;14:15. doi: 10.1186/s13071-020-04498-0. PubMed DOI PMC

Garver L.S., Dong Y., Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 2009;5:e1000335. doi: 10.1371/journal.ppat.1000335. PubMed DOI PMC

Garver L.S., Bahia A.C., Das S., Souza-Neto J.A., Shiao J., Dong Y., Dimopoulos G. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action. PLoS Pathog. 2012;8:e1002737. doi: 10.1371/journal.ppat.1002737. PubMed DOI PMC

Mitri C., Jacques J.-C., Thiery I., Riehle M.M., Xu J., Bischoff E., Morlais I., Nsango S.E., Vernick K.D., Bourgouin C. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog. 2009;5:e1000576. doi: 10.1371/journal.ppat.1000576. PubMed DOI PMC

Dong Y., Aguilar R., Xi Z., Warr E., Mongin E., Dimopoulos G. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog. 2006;2:e52. doi: 10.1371/journal.ppat.0020052. PubMed DOI PMC

Kamhawi S. Phlebotomine sand flies and Leishmania parasites: Friends or foes? Trends Parasitol. 2006;22:439–445. doi: 10.1016/j.pt.2006.06.012. PubMed DOI

Engel P., Moran N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013;37:699–735. doi: 10.1111/1574-6976.12025. PubMed DOI

Sant’Anna M.R., Diaz-Albiter H., Aguiar-Martins K., Al Salem W.S., Cavalcante R.R., Dillon V.M., Bates P.A., Genta F.A., Dillon R.J. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit. Vectors. 2014;7:329. doi: 10.1186/1756-3305-7-329. PubMed DOI PMC

Campolina T.B., Villegas L.E.M., Monteiro C.C., Pimenta P.F.P., Secundino N.F.C. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 2020;14:e0008666. doi: 10.1371/journal.pntd.0008666. PubMed DOI PMC

Sheehan G., Farrell G., Kavanagh K. Immune priming: The secret weapon of the insect world. Virulence. 2020;11:238–246. doi: 10.1080/21505594.2020.1731137. PubMed DOI PMC

Manniello M.D., Moretta A., Salvia R., Scieuzo C., Lucchetti D., Vogel H., Sgambato A., Falabella P. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021 789. 2021;78:4259–4282. doi: 10.1007/s00018-021-03784-z. PubMed DOI PMC

Andoh M., Ueno T., Kawasaki K. Tissue-dependent induction of antimicrobial peptide genes after body wall injury in house fly (Musca domestica) larvae. Drug Discov. Ther. 2018;12:355–362. doi: 10.5582/ddt.2018.01063. PubMed DOI

Buchon N., Broderick N.A., Poidevin M., Pradervand S., Lemaitre B. Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation. Cell Host Microbe. 2009;5:200–211. doi: 10.1016/j.chom.2009.01.003. PubMed DOI

Azevedo R.V.D.M., Dias D.B.S., Bretãs J.A.C., Mazzoni C.J., Souza N.A., Albano R.M., Wagner G., Davila A.M.R., Peixoto A.A. The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs. PLoS ONE. 2012;7:e34495. doi: 10.1371/journal.pone.0034495. PubMed DOI PMC

Jochim R.C., Teixeira C.R., Laughinghouse A., Mu J., Oliveira F., Gomes R.B., Elnaiem D.E., Valenzuela J.G. The midgut transcriptome of Lutzomyia longipalpis: Comparative analysis of cDNA libraries from sugar-fed, blood-fed, post digested and Leishmania infantum chagasi-infected sand flies. BMC Genom. 2008;9:15. doi: 10.1186/1471-2164-9-15. PubMed DOI PMC

Do Nascimento V.V., Mello É.D.O., Carvalho L.P., De Melo E.J.T., Carvalho A.D.O., Fernandes K.V.S., Gomes V.M. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis. Biosci. Rep. 2015;35:e00248. doi: 10.1042/BSR20150060. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace