The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28438833
PubMed Central
PMC5465492
DOI
10.1074/jbc.m116.768127
PII: S0021-9258(20)32154-2
Knihovny.cz E-resources
- Keywords
- G protein, G protein-coupled receptor (GPCR), GABA receptor, adrenergic receptor, basal coupling, cannabinoid receptor type 1 (CB1), dopamine receptor type 2 (D2R), preassembly, signal transduction, two-photon polarization microscopy,
- MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mutation MeSH
- GTP-Binding Protein alpha Subunits, Gi-Go genetics metabolism MeSH
- Receptors, G-Protein-Coupled genetics metabolism MeSH
- Signal Transduction physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- GNAI1 protein, human MeSH Browser
- GTP-Binding Protein alpha Subunits, Gi-Go MeSH
- Receptors, G-Protein-Coupled MeSH
The Gi/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of Gi/o-GPCR coupling and the high rate of Gi/o signal transduction have been hypothesized to be enabled by the existence of stable associates between Gi/o proteins and their cognate GPCRs in the inactive state (Gi/o-GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gαi1 subunits labeled with fluorescent proteins and four GPCRs: the α2A-adrenergic receptor, GABAB, cannabinoid receptor type 1 (CB1R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gαi1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gαi1 subunits and α2A-adrenergic receptor, GABAB, or dopamine receptor type 2 receptors did not reveal any interaction between the Gi1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB1R exhibited an interaction with the Gi1 protein. Further experiments revealed that this interaction is caused solely by CB1R basal activity; no preassembly between CB1R and the Gi1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active Gi1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and Gi1 (basal coupling). These findings suggest that Gi1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs.
See more in PubMed
Oldham W. M., and Hamm H. E. (2006) Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166 PubMed
Tolkovsky A. M., and Levitzki A. (1978) Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17, 3795. PubMed
Hakak Y., Shrestha D., Goegel M. C., Behan D. P., and Chalmers D. T. (2003) Global analysis of G-protein-coupled receptor signaling in human tissues. FEBS Lett. 550, 11–17 PubMed
Lohse M. J., Nikolaev V. O., Hein P., Hoffmann C., Vilardaga J. P., and Bünemann M. (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol. Sci. 29, 159–165 PubMed
Neubig R. R., Gantzos R. D., and Thomsen W. J. (1988) Mechanism of agonist and antagonist binding to α2 adrenergic receptors: evidence for a precoupled receptor-guanine nucleotide protein complex. Biochemistry 27, 2374–2384 PubMed
Lohse M. J., Hein P., Hoffmann C., Nikolaev V. O., Vilardaga J. P., and Bünemann M. (2008) Kinetics of G-protein-coupled receptor signals in intact cells. Br. J. Pharmacol. 153, S125–S132 PubMed PMC
Qin K., Dong C., Wu G., and Lambert N. A. (2011) Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers. Nat. Chem. Biol. 7, 740–747 PubMed PMC
Ayoub M. A., Maurel D., Binet V., Fink M., Prézeau L., Ansanay H., and Pin J. P. (2007) Real-time analysis of agonist-induced activation of protease-activated receptor 1/Gαi1 protein complex measured by bioluminescence resonance energy transfer in living cells. Mol. Pharmacol. 71, 1329–1340 PubMed
Hein P., and Bünemann M. (2009) Coupling mode of receptors and G proteins. Naunyn Schmiedebergs. Arch. Pharmacol. 379, 435–443 PubMed
Vilardaga J. P., Bünemann M., Feinstein T. N., Lambert N., Nikolaev V. O., Engelhardt S., Lohse M. J., and Hoffmann C. (2009) GPCR and G proteins: drug efficacy and activation in live cells. Mol. Endocrinol. 23, 590–599 PubMed PMC
Galés C., Rebois R. V., Hogue M., Trieu P., Breit A., Hébert T. E., and Bouvier M. (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184 PubMed
Nobles M., Benians A., and Tinker A. (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc. Natl. Acad. Sci. U.S.A. 102, 18706–18711 PubMed PMC
Philip F., Sengupta P., and Scarlata S. (2007) Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J. Biol. Chem. 282, 19203–19216 PubMed
Galés C., Van Durm J. J., Schaak S., Pontier S., Percherancier Y., Audet M., Paris H., and Bouvier M. (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 PubMed
Fowler C. E., Aryal P., Suen K. F., and Slesinger P. A. (2007) Evidence for association of GABAB receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J. Physiol. 580, 51–65 PubMed PMC
Hein P., Frank M., Hoffmann C., Lohse M. J., and Bünemann M. (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J. 24, 4106–4114 PubMed PMC
Azpiazu I., and Gautam N. (2004) A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. J. Biol. Chem. 279, 27709–27718 PubMed
Qin K., Sethi P. R., and Lambert N. A. (2008) Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J. 22, 2920–2927 PubMed PMC
Oldham W. M., and Hamm H. E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 PubMed
Seifert R., and Wenzel-Seifert K. (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch. Pharmacol. 366, 381–416 PubMed
Lazar J., Bondar A., Timr S., and Firestein S. J. (2011) Two-photon polarization microscopy reveals protein structure and function. Nat. Methods 8, 684–690 PubMed
Bondar A., and Lazar J. (2014) Dissociated Gα GTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins. J. Biol. Chem. 289, 1271–1281 PubMed PMC
Han Z., Jin L., Chen F., Loturco J. J., Cohen L. B., Bondar A., Lazar J., and Pieribone V. A. (2014) Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLoS One 9, e113873. PubMed PMC
Bünemann M., Frank M., and Lohse M. J. (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. U.S.A. 100, 16077–16082 PubMed PMC
Leaney J. L., Benians A., Graves F. M., and Tinker A. (2002) A novel strategy to engineer functional fluorescent inhibitory G-protein α subunits. J. Biol. Chem. 277, 28803–28809 PubMed
Wu Y. L., Hooks S. B., Harden T. K., and Dohlman H. G. (2004) Dominant-negative inhibition of pheromone receptor signaling by a single point mutation in the G protein α subunit. J. Biol. Chem. 279, 35287–35297 PubMed
Masharina A., Reymond L., Maurel D., Umezawa K., and Johnsson K. (2012) A fluorescent sensor for GABA and synthetic GABAB receptor ligands. J. Am. Chem. Soc. 134, 19026–19034 PubMed
Simon A. C., Loverdo C., Gaffuri A. L., Urbanski M., Ladarre D., Carrel D., Rivals I., Leterrier C., Benichou O., Dournaud P., Szabo B., Voituriez R., and Lenkei Z. (2013) Activation-dependent plasticity of polarized GPCR distribution on the neuronal surface. J. Mol. Cell. Biol. 5, 250–265 PubMed
Leterrier C., Bonnard D., Carrel D., Rossier J., and Lenkei Z. (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J. Biol. Chem. 279, 36013–36021 PubMed
Bouaboula M., Perrachon S., Milligan L., Canat X., Rinaldi-Carmona M., Portier M., Barth F., Calandra B., Pecceu F., Lupker J., Maffrand J. P., Le Fur G., and Casellas P. (1997) A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1: evidence for a new model of receptor/ligand interactions. J. Biol. Chem. 272, 22330–22339 PubMed
D'Antona A. M., Ahn K. H., and Kendall D. A. (2006) Mutations of CB1 T210 produce active and inactive receptor forms: correlations with ligand affinity, receptor stability, and cellular localization. Biochemistry 45, 5606–5617 PubMed PMC
Scott C. E., Abrol R., Ahn K. H., Kendall D. A., and Goddard W. A. 3rd (2013) Molecular basis for dramatic changes in cannabinoid CB1 G protein-coupled receptor activation upon single and double point mutations. Protein Sci. 22, 101–113 PubMed PMC
Lan T. H., Liu Q., Li C., Wu G., and Lambert N. A. (2012) Sensitive and high resolution localization and tracking of membrane proteins in live cells with BRET. Traffic 13, 1450–1456 PubMed PMC
Vásquez C., and Lewis D. L. (1999) The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J. Neurosci. 19, 9271–9280 PubMed PMC
Zhong H., Wade S. M., Woolf P. J., Linderman J. J., Traynor J. R., and Neubig R. R. (2003) A spatial focusing model for G protein signals: regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding. J. Biol. Chem. 278, 7278–7284 PubMed
Bond R. A., Leff P., Johnson T. D., Milano C. A., Rockman H. A., McMinn T. R., Apparsundaram S., Hyek M. F., Kenakin T. P., and Allen L. F. (1995) Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 374, 272–276 PubMed
Mahama P. A., and Linderman J. J. (1994) A Monte Carlo study of the dynamics of G-protein activation. Biophys. J. 67, 1345–1357 PubMed PMC
Hamill O. P., Marty A., Neher E., Sakmann B., and Sigworth F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 PubMed
Challiss R. A., and Wess J. (2011) Receptors: GPCR-G protein preassembly? Nat. Chem. Biol. 7, 657–658 PubMed
Directionality of light absorption and emission in representative fluorescent proteins