Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média
PubMed
33580182
PubMed Central
PMC7881160
DOI
10.1038/s42003-021-01694-1
PII: 10.1038/s42003-021-01694-1
Knihovny.cz E-zdroje
- MeSH
- analýza jednotlivých buněk * MeSH
- fluorescenční barviva metabolismus MeSH
- fluorescenční mikroskopie * MeSH
- HEK293 buňky MeSH
- lidé MeSH
- luminescentní proteiny genetika metabolismus MeSH
- navrhování softwaru * MeSH
- počítačové zpracování obrazu * MeSH
- polarizační mikroskopie * MeSH
- proteiny vázající GTP genetika metabolismus MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- signální transdukce MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- luminescentní proteiny MeSH
- proteiny vázající GTP MeSH
- rekombinantní fúzní proteiny MeSH
Fluorescence-detected linear dichroism microscopy allows observing various molecular processes in living cells, as well as obtaining quantitative information on orientation of fluorescent molecules associated with cellular features. Such information can provide insights into protein structure, aid in development of genetically encoded probes, and allow determinations of lipid membrane properties. However, quantitating and interpreting linear dichroism in biological systems has been laborious and unreliable. Here we present a set of open source ImageJ-based software tools that allow fast and easy linear dichroism visualization and quantitation, as well as extraction of quantitative information on molecular orientations, even in living systems. The tools were tested on model synthetic lipid vesicles and applied to a variety of biological systems, including observations of conformational changes during G-protein signaling in living cells, using fluorescent proteins. Our results show that our tools and model systems are applicable to a wide range of molecules and polarization-resolved microscopy techniques, and represent a significant step towards making polarization microscopy a mainstream tool of biological imaging.
Faculty of Sciences Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Science Praha 6 Czech Republic
Zobrazit více v PubMed
Steinbach G, et al. Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope. Cytom. A. 2008;73:202–208. doi: 10.1002/cyto.a.20517. PubMed DOI
Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 1979;26:557–573. doi: 10.1016/S0006-3495(79)85271-6. PubMed DOI PMC
Timr S, et al. Nonlinear optical properties of fluorescent dyes allow for accurate determination of their molecular orientations in phospholipid membranes. J. Phys. Chem. B. 2015;119:9706–9716. doi: 10.1021/acs.jpcb.5b05123. PubMed DOI
Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A. Two-photon absorption properties of fluorescent proteins. Nat. Methods. 2011;8:393–399. doi: 10.1038/nmeth.1596. PubMed DOI PMC
Lazar J, Bondar A, Timr S, Firestein SJ. Two-photon polarization microscopy reveals protein structure and function. Nat. Methods. 2011;8:684–690. doi: 10.1038/nmeth.1643. PubMed DOI
Kampmann M, Atkinson CE, Mattheyses AL, Simon SM. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat. Struct. Mol. Biol. 2011;18:643–649. doi: 10.1038/nsmb.2056. PubMed DOI PMC
Valades Cruz CA, et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl Acad. Sci. USA. 2016;113:E820–E828. doi: 10.1073/pnas.1516811113. PubMed DOI PMC
Gorjanacz M, et al. Domains of Importin-alpha2 required for ring canal assembly during Drosophila oogenesis. J. Struct. Biol. 2006;154:27–41. doi: 10.1016/j.jsb.2005.12.007. PubMed DOI
Zhanghao K, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun. 2019;10:4694. doi: 10.1038/s41467-019-12681-w. PubMed DOI PMC
Bondar A, Lazar J. Dissociated GalphaGTP and Gbetagamma protein subunits are the major activated form of heterotrimeric Gi/o proteins. J. Biol. Chem. 2014;289:1271–1281. doi: 10.1074/jbc.M113.493643. PubMed DOI PMC
Bondar A, Lazar J. The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J. Biol. Chem. 2017;292:9690–9698. doi: 10.1074/jbc.M116.768127. PubMed DOI PMC
DeMay BS, Noda N, Gladfelter AS, Oldenbourg R. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys. J. 2011;101:985–994. doi: 10.1016/j.bpj.2011.07.008. PubMed DOI PMC
Han Z, et al. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLoS ONE. 2014;9:e113873. doi: 10.1371/journal.pone.0113873. PubMed DOI PMC
Benninger RK, et al. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses. Biophys. J. 2009;96:L13–L15. doi: 10.1016/j.bpj.2008.10.005. PubMed DOI PMC
Ferrand P, et al. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores. Biophys. J. 2014;106:2330–2339. doi: 10.1016/j.bpj.2014.04.011. PubMed DOI PMC
Benninger RK, Onfelt B, Neil MA, Davis DM, French PM. Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys. J. 2005;88:609–622. doi: 10.1529/biophysj.104.050096. PubMed DOI PMC
McQuilken M, et al. Polarized fluorescence microscopy to study cytoskeleton assembly and organization in live cells. Curr. Protoc. cell Biol. 2015;67:4.29.1–4.29.13. doi: 10.1002/0471143030.cb0429s67. PubMed DOI PMC
Lazar, J. Polarization microscopy macros v2.0 (Zenodo, 2020). 10.5281/zenodo.4383287.
Kress A, et al. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy. Biophys. J. 2013;105:127–136. doi: 10.1016/j.bpj.2013.05.043. PubMed DOI PMC
Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296:913–916. doi: 10.1126/science.1068539. PubMed DOI
Roorda RD, Hohl TM, Toledo-Crow R, Miesenbock G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 2004;92:609–621. doi: 10.1152/jn.00087.2004. PubMed DOI
Del Piccolo N, Hristova K. Quantifying the interaction between EGFR dimers and Grb2 in live cells. Biophys. J. 2017;113:1353–1364. doi: 10.1016/j.bpj.2017.06.029. PubMed DOI PMC
Timr S, et al. Accurate determination of the orientational distribution of a fluorescent molecule in a phospholipid membrane. J. Phys. Chem. B. 2014;118:855–863. doi: 10.1021/jp4067026. PubMed DOI
Ansbacher T, et al. Calculation of transition dipole moment in fluorescent proteins-towards efficient energy transfer. Phys. Chem. Chem. Phys. 2012;14:4109–4117. doi: 10.1039/c2cp23351g. PubMed DOI
Thevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 1998;7:27–41. doi: 10.1109/83.650848. PubMed DOI
Royant A, Noirclerc-Savoye M. Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. J. Struct. Biol. 2011;174:385–390. doi: 10.1016/j.jsb.2011.02.004. PubMed DOI
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI
de Jong DH, et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI
Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Tironi IG, Sperb R, Smith PE, van Gunsteren WF. A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 1995;102:5451–5459. doi: 10.1063/1.469273. DOI
Páll S, Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI
Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008;4:116–122. doi: 10.1021/ct700200b. PubMed DOI
Myšková J, et al. Directionality of light absorption and emission in representative fluorescent proteins. Proc. Natl Acad. Sci. 2020;117:32395–32401. doi: 10.1073/pnas.2017379117. PubMed DOI PMC
Oliphant TE. Python for scientific computing. Comput. Sci. Eng. 2007;9:10–20. doi: 10.1109/MCSE.2007.58. DOI
Virtanen, P. et al. SciPy 1.0—fundamental algorithms for scientific computing in python. https://arxiv.org/abs/1907.10121 (2019). PubMed PMC