Surface Modification of Polymer Substrates for Biomedical Applications

. 2017 Sep 21 ; 10 (10) : . [epub] 20170921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28934132

While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

Zobrazit více v PubMed

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Brown B.N., Badylak S.F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater. 2013;9:4948–4955. doi: 10.1016/j.actbio.2012.10.025. PubMed DOI

Kylian O., Choukourov A., Biderman H. Nanostructured plasma polymers. Thin Solid Films. 2013;548:1–17. doi: 10.1016/j.tsf.2013.09.003. DOI

Velardi L., Lorusso A., Paladini F., Siciliano M.V., Giulio M., Raino A., Nassisi V. Modification of polymer characteristics by laser and ion beam. Radiat. Eff. Defects Solids. 2010;165:637–642. doi: 10.1080/10420151003729516. DOI

Bacakova L., Mares V., Bottone M.G., Pellicciari C., Lisa V., Svorcik V. Fluorine ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture. J. Biomed. Mater. Res. 2000;49:369–379. doi: 10.1002/(SICI)1097-4636(20000305)49:3<369::AID-JBM10>3.0.CO;2-W. PubMed DOI

Slepička P., Michaljaničová I., Slepičková Kasálková N., Kolská Z., Rimpelová S., Ruml T., Švorčík V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879.

Zong M.M., Gong Y.K. Fabrication and biocompatibility of cell outer membrane mimetic surfaces. Chin. J. Polym. Sci. 2011;29:53–64. doi: 10.1007/s10118-010-1019-1. DOI

Zarek S.K., Wang Y.M. Single-molecule imaging of protein adsorption mechanisms to surfaces. Microsc. Res. Tech. 2011;74:682–687. PubMed

Sharma I., Pattanayek S.K. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme. Biophys. Chem. 2017;226:14–22. doi: 10.1016/j.bpc.2017.03.011. PubMed DOI

Maitre J.L., Heisenberg C.P. The role of adhesion energy in controlling cell–cell contacts. Curr. Opin. Cell Biol. 2011;23:508–514. doi: 10.1016/j.ceb.2011.07.004. PubMed DOI PMC

Dhyani V., Singh N. Controlling the Cell Adhesion Property of Silk Films by Graft Polymerization. Appl. Mater. Interfaces. 2014;6:5005–5011. doi: 10.1021/am4060595. PubMed DOI

McCarthy C.L., Uchihara Y., Vlychou M., Grammatopoulos G., Athanasou N.A. Development of malignant lymphoma after metal-on-metal hip replacement: a case report and review of the literature. Skelet. Radiol. 2017;46:831–836. doi: 10.1007/s00256-017-2612-y. PubMed DOI

Baino F., Montealegre M.A., Orlygsson G., Novarja G., Vitale-Brovarone C. Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: A proof-of-concept study. J. Mater. Sci. 2017;52:9115–9128. doi: 10.1007/s10853-017-0837-8. DOI

Roy I. Biodegradable Polymers. J. Chem. Technol. Biotechnol. 2010;85:731. doi: 10.1002/jctb.2420. DOI

Bauer S., Schmuki P., von der Mark K. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces. J. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI

Santos E.R., Burini E.C., Wang S.H. UV-ozone generation from modified high intensity discharge mercury vapor lamps for treatment of indium tin oxide films. Ozone Sci. Eng. 2012;34:129–135. doi: 10.1080/01919512.2011.649132. DOI

Gregoire S., Boudinet M., Pelascini F., Surma F., Detalle V., Holl Y. Laser-induced breakdown spectroscopy for polymer identification. Anal. Bioanal. Chem. 2011;400:3331–3340. doi: 10.1007/s00216-011-4898-2. PubMed DOI

Gour N., Ngo K.X., Vebert-Nardin C. Anti-infectious surfaces achieved by polymer modification. Macromol. Mater. Eng. 2014;299:648–668. doi: 10.1002/mame.201300285. DOI

Reznickova A., Kvitek O., Kolarova K., Smejkalova Z., Svorcik V. Cell adhesion and proliferation on polytertafluoroethylene with plasma-metal and plasma-metal-carbon interfaces. Jpn. J. Appl. Phys. 2017;56:1–6. doi: 10.7567/JJAP.56.06GG03. DOI

Parizek M., Slepickova Kasalkova N., Bacakova L., Svindrych Z., Slepicka P., Bacakova M., Lisa V., Svorcik V. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances. BioMed Res. Int. 2013:371430. doi: 10.1155/2013/371430. PubMed DOI PMC

Bacakova L., Filova E., Rypacek F., Svorcik V., Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004;53:35–45. PubMed

Anselme K., Ponche A., Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials—Part 2: Biological aspects. J. Eng. Med. 2010;224:1487–1507. doi: 10.1243/09544119JEIM901. PubMed DOI

Bolle M., Lazare S. Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 1993;69:31–37. doi: 10.1016/0169-4332(93)90478-T. DOI

Borowiec A., Haugen H.K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 2003;82:4462–4464. doi: 10.1063/1.1586457. DOI

Granados E., Martinez-Calderon M., Gomez M., Rodriguez A., Olaizola S.M. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS) Opt. Express. 2017;25:15330–15335. doi: 10.1364/OE.25.015330. PubMed DOI

Kim H.C., Reinhardt H., Hillebrecht P., Hampp N.A. Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures. Adv. Mater. 2012;24:1994–1998. doi: 10.1002/adma.201200534. PubMed DOI

Slepicka P., Nedela O., Siegel J., Krajcar R., Kolska Z., Svorcik V. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014;8:459–466. doi: 10.3144/expresspolymlett.2014.50. DOI

Slepicka P., Nedela O., Sajdl P., Kolska Z., Svorcik V. Polyethylenenaphtalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI

Nedela O., Slepicka P., Sajdl P., Vesely M., Svorcik V. Ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017;49:25–33. doi: 10.1002/sia.6054. DOI

Krajcar R., Siegel J., Slepicka P., Fitl P., Svorcik V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI

Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI

Teixeira A.I., Nealey P.F., Murphy C.J. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. A. 2004;71:369–376. doi: 10.1002/jbm.a.30089. PubMed DOI

Jager M., Sonntag F., Pietzsch M., Poll R., Rabenau M. Surface modification of polymers by using excimer laser for biomedical applications. Plasma Process. Polym. 2007;4:416–418. doi: 10.1002/ppap.200731011. DOI

Xu C., Yang F., Wang S., Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J. Biomed. Mater. Res. A. 2004;71:154–161. doi: 10.1002/jbm.a.30143. PubMed DOI

Ranucci C.S., Moghe P.V. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J. Biomed. Mater. Res. A. 2001;54:149–161. doi: 10.1002/1097-4636(200102)54:2<149::AID-JBM1>3.0.CO;2-O. PubMed DOI

Ko T.J., Jo W., Lee H.J., Oh K.H., Moon M.W. Nanostructures formed on carbon-based materials with different levels of crystallinity using oxygen plasma treatment. Thin Solid Films. 2015;590:324–329. doi: 10.1016/j.tsf.2015.02.040. DOI

Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. J. Biomater. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI

Duncan A.C., Rouais F., Lazare S., Bordenave L., Baquey C. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloid Surf. B. 2007;54:150–159. doi: 10.1016/j.colsurfb.2006.09.013. PubMed DOI

Yim E.K.F., Reano R.M., Pang S.W., Yeec A.F., Chen C.S., Leong K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC

Dalby M.J., Riehle M.O., Johnstone H., Affrossman S., Curtis A.S.G. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol. Int. 2004;28:229–236. doi: 10.1016/j.cellbi.2003.12.004. PubMed DOI

Chelli B., Barbalinardo M., Valle F., Greco P., Bysternova E., Bianchi M., Biscarini F. Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus. 2014:4. doi: 10.1098/rsfs.2013.0041. PubMed DOI PMC

Recknor J.B., Recknor J.C., Sakaguchi D.S., Mallapragada S.K. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials. 2004;25:2753–2767. doi: 10.1016/j.biomaterials.2003.11.045. PubMed DOI

Michaljaničová I., Slepička P., Veselý M., Kolská Z., Švorčík V. Nanowires and nanodots prepared with polarized KrF laser on polyethersulphone. Mater. Lett. 2015;144:15–18. doi: 10.1016/j.matlet.2015.01.007. DOI

Walachova K., Bacakova L., Dvorankova B., Svorcik V. Biocompatibility of polymers modified by high-energy ions. Chem. Listy. 2002;96:19–24.

Carella E., Leon M., Sauvage T., Gonzalez M. On ion implantation and damage effect in Li 2 TiO 3 as a fusion breeder blanket: A technological approach for degradation testing. Fusion Eng. Des. 2014;89:1529–1533. doi: 10.1016/j.fusengdes.2014.02.072. DOI

Chang Z., Laverne J.A. Hydrogen production in gamma-ray and helium-ion radiolysis of polyethylene, polypropylene, poly(methyl-methacrylate) and polystyrene. J. Polym. Sci. Polym. Chem. 2000;38:1656–1661. doi: 10.1002/(SICI)1099-0518(20000501)38:9<1656::AID-POLA31>3.0.CO;2-S. DOI

Nikolaev A.G., Yushkov G.Y., Oks E.M., Oztarhan A., Akpek A., Hames-Kocabas E., Urkas E.S., Brown I.G. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Appl. Surf. Sci. 2014;310:51–55. doi: 10.1016/j.apsusc.2014.04.002. DOI

Bacakova L., Svorcik V., Rybka V., Micek I., Hnatowicz V., Lisa V., Kocourek F. Adhesion and proliferation of cultured human aortic smooth muscle cells on polystyrene implanted with N+, F+ and Ar+ ions: Correlation with polymer surface polarity and carbonization. Biomaterials. 1996;17:1121–1126. doi: 10.1016/0142-9612(96)85914-X. PubMed DOI

Shekhawat N., Aggarwal S., Sharma A., Nair K.G.M. Surface hardening in N+ implanted polycarbonate. J. Mater. Sci. 2015;50:3005–3013. doi: 10.1007/s10853-015-8817-3. DOI

Avalos A., Haza A.I., Morales P. Cytotoxicity of silver nanoparticles on tumoral and normal human cells. Toxicol. Lett. 2012;211:202–203. doi: 10.1016/j.toxlet.2012.03.727. DOI

Hayes J.S., Czekanska E.M., Richards R.G. In: Tissue Engineering III: Cell-Surface Interactions For Tissue Culture. 1st ed. Kasper C., Witte F., Pörtner R., editors. Volume 126. Springer; Heidelberg, Germany: 2012. p. 1.

Gosau M., Haupt M., Thude S., Strowitzki M., Schminke B., Buergers R. Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2016;104:1571–1579. doi: 10.1002/jbm.b.33376. PubMed DOI

Kim R.S. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000;77:1913–1920. doi: 10.1002/1097-4628(20000829)77:9<1913::AID-APP7>3.0.CO;2-#. DOI

Svorcik V., Proskova K., Hnatowicz V., Rybka V. Iodine penetration and doping of ion-modified polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. B. 1999;149:312–318. doi: 10.1016/S0168-583X(98)00942-2. DOI

Predeep P., Mathew A.M. Intrinsically conducing rubbers: toward micro applications. Rubber Chem. Technol. 2011;84:366–401.

Svorcik V., Proskova K., Rybka V., Hnatowicz V. Water diffusion in polyethylene modified by ion irradiation. Polym. Degrad. Stab. 1998;60:431–435. doi: 10.1016/S0141-3910(97)00104-3. DOI

Svorcik V., Rybka V., Hnatowicz V., Bacakova L. Polarity, resistivity and biocompatibility of polyethylene doped with carbon black. J. Mater. Sci. Lett. 1995;14:1723–1724. doi: 10.1007/BF00270988. DOI

Svorcik V., Arenholz E., Rybka V., Hnatowicz V. AFM surface morphology investigation of ion beam modified polyimide. Nucl. Instrum. Methods Phys. Res. Sect. B. 1997;122:663–667. doi: 10.1016/S0168-583X(96)00829-4. DOI

Paterbauer T., Yakunin S., Siegel J. Heitz, Dynamics of the alignment of mammalian cells on a nano-structured polymer surface. J. Modern Trends Polym. Sci.—EPF 09. 2010;296:272–277.

Mattioli S., Martino S., D’Angelo F., Emiliani C., Kenny J.M., Armenato I. Nanostructured polystyrene films engineered by plasma processes: Surface characterization and stem cell interaction. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40427. DOI

Svorcik V., Endrst R., Rybka V., Hnatowicz V. Time dependence of the number of unpaired electrons and the sheet resistance in ion irradiated polymers. Mater. Lett. 1996;28:441–444. doi: 10.1016/0167-577X(96)00097-3. DOI

Alonso J.L., Goldmann W.H. Cellular mechanotransduction. AIMS Biophys. 2016;3:50–62. doi: 10.3934/biophy.2016.1.50. DOI

Gencer G.M., Karadeniz S., Lambrecht F.Y., Havitcioglu H., Ozkal S., Baskin H. The effects of plasma immersion ion implantation and deposition (PIII&D) process voltages on the morphology, phase formation and E. coli adhesion of Ag coatings obtained on the surface of Ti6Al4V orthopedic implant material in nitrogen plasma. J. Fac. Eng. Archit. Gazi. 2017;32:231–241.

Chvatalova L., Cermak R., Mracek A., Grulich O., Vesel A., Ponozil P., Minarik A., Cvelbar U., Benicek L., Sajdl P. The effect of plasma treatment on structure and properties of poly(1-buten) surface. Eur. Polym J. 2012;48:866–874. doi: 10.1016/j.eurpolymj.2012.02.007. DOI

Junkar I. Plasma treatment of amorphous and semicrystalline polymers for improved biocompatibility. J. Vac. 2013;98:111–115. doi: 10.1016/j.vacuum.2012.11.006. DOI

Kessler F., Steffens D., Lando G.A., Pranke P., Weibel D.E. Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes. J. Tissue Eng. Regen. Med. 2014;11:23–31. doi: 10.1007/s13770-013-1117-6. DOI

Bax D.V., McKenzie D.R., Bilek M.M.M., Weiss A.S. Directed cell attachment by tropoelastin on masked plasma immersion ion implantation treated PTFE. Biomaterials. 2011;32:6710–6718. doi: 10.1016/j.biomaterials.2011.05.060. PubMed DOI

Barkusky F., Bayer A., Mann K. Ablation of polymers by focused EUV radiation from a table-top laser-produced plasma source. Appl. Phys. A Mater. Sci. Process. 2011;105:17–23. doi: 10.1007/s00339-011-6540-8. DOI

Siegel J., Reznickova A., Chaloupka A., Slepicka P., Svorcik V. Ablation and water etching of plasma treated polymers. Radiat. Eff. Defects Solids. 2008;163:779–788. doi: 10.1080/10420150801969654. DOI

Kutasi K., Bibinov N., von Keudell A., Wiesermann K. Wettabilities of plasma deposited polymer films. J. Optoelectron. Adv. Mater. 2005;7:2549–2556.

Wilson D.J., Pond R.C., Williams R.L. Wettability of chemically modified polymers: experiment and theory. Interface Sci. 2000;8:389–399. doi: 10.1023/A:1008735929894. DOI

Huang X., Li C.C., Zhu W.X., Zhang D., Guan G.H., Xiao Y.N. Ultraviolet-induced crosslinking of poly(butylene succinate) and its thermal property, dynamic mechanical property, and biodegradability. Polym. Adv. Technol. 2011;22:648–656. doi: 10.1002/pat.1560. DOI

Reznickova A., Novotna Z., Kolska Z., Slepickova Kasalkova N., Rimpelova S., Svorcik V. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Mater. Sci. Eng. C. 2015;52:259–266. doi: 10.1016/j.msec.2015.03.052. PubMed DOI

Nedela O., Slepicka P., Kolska Z., Slepickova Kasalkova N., Sajdl P., Vesely M., Svorcik V. Functionalized polyethylene naphthalate for cytocompatibility improvement. React. Funct. Polym. 2016;100:44–52. doi: 10.1016/j.reactfunctpolym.2016.01.004. DOI

Metz R.P., Patterson J.J., Wilson E. Vascular Smooth Muscle Cells: Isolation, Culture, and Characterization. Methods Mol. Biol. 2012;843:169–176. PubMed

Zimmermanm R., Birkert O., Gauglitz G., Werner C. Electrosurface phenomena at polymer films for biosensor applications. ChemPhysChem. 2003;4:509–514. doi: 10.1002/cphc.200200475. PubMed DOI

Kirby B.J., Hasselbrink E.F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis. 2004;25:187–202. doi: 10.1002/elps.200305754. PubMed DOI

Grancaric A.M., Tarbuk A., Pusic T. Electrokinetic properties of textile fabrics. Color Technol. 2005;121:221–227. doi: 10.1111/j.1478-4408.2005.tb00277.x. DOI

Kolska Z., Reznickova A., Nagyova M., Slepickova Kasalkova N., Sajdl P., Slepicka P., Svorcik V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI

Slepička P., Peterková L., Rimpelová S., Pinkner A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activation of perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI

Slepicka P., Trostova S., Slepickova Kasalkova N., Kolska Z., Malinsky P., Mackova A., Bacakova L., Svorcik V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stab. 2012;97:1075–1082. doi: 10.1016/j.polymdegradstab.2012.04.013. DOI

Olivares-Navarrete R., Hyzy S.L., Gittens R.A., Schneider J.M., Haithcock D.A., Ullrich P.F., Slosar P.J., Schwartz Z., Boyan B.D. Rough titanium alloys regulate osteoblast production of angiogenic factors. J. Spine. 2013;13:1563–1570. doi: 10.1016/j.spinee.2013.03.047. PubMed DOI PMC

Ellinas K., Tserepi A., Gogolides E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Langmuir. 2011;27:3960–3969. doi: 10.1021/la104481p. PubMed DOI

Tsougeni K., Vourdas N., Tserepi A., Gogolides E. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: From stable super hydrophilic to super hydrophobic surfaces. Langmuir. 2009;25:11748–11759. doi: 10.1021/la901072z. PubMed DOI

Gianneli M., Tsougeni K., Grammoustianou A., Tserepi A., Gogolides E., Gizeli E. Nanostructured PMMA-coated Love wave device as a platform for protein adsorption studies. Sens. Actuators B. 2016;236:583–590. doi: 10.1016/j.snb.2016.05.120. DOI

Dimitrakellis P., Travlos A., Psycharis V.P., Gogolides E. Superhydrophobic Paper by Facile and Fast Atmospheric Pressure Plasma Etching. Plasma Process. Polym. 2017;14 doi: 10.1002/ppap.201600069. DOI

Ellinas K., Tsougeni K., Petrou P.S., Boulousis G., Tsoukleris D., Pavlatou E., Tserepi A., Kakabakos S.E., Gogolides E. Three-dimensional plasma micro–nanotextured cyclo-olefin-polymer surfaces for biomolecule immobilization and environmentally stable superhydrophobic and superoleophobic behavior. Chem. Eng. J. 2016;300:394–403. doi: 10.1016/j.cej.2016.04.137. DOI

Ellinas K., Pujari S.P., Dragatogiannis D.A., Charitidis C.A., Tserepi A., Zuilhof H., Gogolides E. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS Appl. Mater. Interfaces. 2014;6:6510–6524. doi: 10.1021/am5000432. PubMed DOI

Gogolides E., Ellinas K., Tserepi A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 2015;132:135–155. doi: 10.1016/j.mee.2014.10.002. DOI

Leite A.J., Mano J.F. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J. Mater. Chem. B. 2017;5:4555–4568. doi: 10.1039/C7TB00404D. PubMed DOI

Carvalho A.L., Vale A.C., Sousa M.P., Barbosa A.M., Torrado E., Mano J.F., Alves N.M. Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. J. Mater. Chem. B. 2016;4:5385–5393. doi: 10.1039/C6TB00841K. PubMed DOI

Tsougeni K., Petrou P.S., Awsiuk K., Marzec M.M., Ioannidis N., Petrouleas V., Tserepi A., Kakabakos S.E., Gogolides E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces. 2015;7:14670–14681. doi: 10.1021/acsami.5b01754. PubMed DOI

Slepičková Kasálková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9 doi: 10.1186/1556-276X-9-161. PubMed DOI PMC

Bilek M.M., McKenzie D.R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys. Rev. 2010;2:55–65. doi: 10.1007/s12551-010-0028-1. PubMed DOI PMC

Bilek M.M., Bax D.V., Kondyurin A., Yin Y., Nosworthy N.J., Fisher K., Waterhouse A., Weiss A.S., dos Remedios C.G., McKenzie D.R. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Sci. USA. 2011;108:14405–14410. doi: 10.1073/pnas.1103277108. PubMed DOI PMC

Schober J.M., Komarova Y.A., Chaga O.Y., Akhmanova A., Borisy G.G. Microtubule-targeting-dependent reorganization of filopodia. J. Cell Sci. 2007;120:1235–1244. doi: 10.1242/jcs.003913. PubMed DOI

Kim J., Lee J., Kwon S., Jeong S. Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J. Nanosci. Nanotechnol. 2009;9:1098–1102. doi: 10.1166/jnn.2009.C096. PubMed DOI

Shukla R., Bansal V., Chaudhary M., Basu A., Bhonde R.R., Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21:10644–10654. doi: 10.1021/la0513712. PubMed DOI

Parizek M., Kasalkova N., Bacakova L., Slepicka P., Blazkova M., Svorcik V. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles. Int. J. Mol. Sci. 2009;10:4352–4374. doi: 10.3390/ijms10104352. PubMed DOI PMC

Oh W.K., Yoon H., Jang J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials. 2010;31:1342–1348. doi: 10.1016/j.biomaterials.2009.10.018. PubMed DOI

Tavangarian F., Li Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram. Int. 2012;38:6075–6090. doi: 10.1016/j.ceramint.2012.05.038. DOI

Liao C.Z., Li K., Wong H.M., Tong W.Y., Yeung K.W.K., Tjong S.C. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng. C. 2013;33:1380–1388. doi: 10.1016/j.msec.2012.12.039. PubMed DOI

Asakawa R., Nagashima S., Nakamura Y., Hasebe T., Suzuki T., Hotta A. Combining polymers with diamond-like carbon (DLC) for highly functionalized materials. Surf. Coat. Thechnol. 2011;206:676–685. doi: 10.1016/j.surfcoat.2011.02.064. DOI

Guerrouache M., Mahouche-Chergui S., Chehimi M.M., Carbonnier B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol–yne click photopatterning approach. Chem. Commun. 2012;48:7486–7488. doi: 10.1039/c2cc33134a. PubMed DOI

Guerra J., Herrero M.A., Carrion B., Perez-Martinez F.C., Lucio M., Rubio N. Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon. 2012;50:2832–2844. doi: 10.1016/j.carbon.2012.02.050. DOI

Jones M.R., Osberg K.D., Macfarlane R.J., Langille M.R., Mirkin C.A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011;111:3736–3827. doi: 10.1021/cr1004452. PubMed DOI

Reznickova A., Siegel J., Slavikova N., Kolska Z., Stazsek M., Svorcik V. Preparation of Ordered Silver Angular Nanoparticles Array in Copolymer Film for Surface Enhanced Raman Spectroscopy. React. Funct. Polym. 2016;105:1–8. doi: 10.1016/j.reactfunctpolym.2016.05.012. DOI

Chen W., Jie-Rong C., Lu R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Sci. 2008;254:2882–2888.

Reznickova A., Novotna Z., Kolska Z., Svorcik V. Immobilization of silver nanoparticles on polyethylene terephthalate. Nanoscale Res. Lett. 2014;9 doi: 10.1186/1556-276X-9-305. PubMed DOI PMC

Ferreira A., Pedrosa P., Lanceros-Mendez S., Machado A.V., Vaz F. Activation of polyethylene terephthalate using different plasma treatments. J. Optoelectron. Adv. Mater. 2010;12:1581–1589.

Slepickova Kasalkova N., Slepicka P., Kolska Z., Sajdl P., Bacakova L., Rimpelova S., Svorcik V. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles. Nucl. Instrum. Methods Phys. Res. B. 2012;272:391–395. doi: 10.1016/j.nimb.2011.01.108. DOI

Vesel A., Semenic T. Etching rates of different polymers and oxygen plasma = Study of the etching rate of various polymers in oxygen plasma. Mater. Technol. 2012;46:227–231. (In Slovenian)

Svorcik V., Makajova Z., Slepickova Kasalkova N., Kolska Z., Zakova P., Karpiskova J., Stibor I., Slepicka P. Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon. 2014;69:361–371. doi: 10.1016/j.carbon.2013.12.037. DOI

Satishkumar R., Vertegel A. Charge-directed targeting of antimicrobial protein-nanoparticle conjugates. Biotechnol. Bioeng. 2008;100:403–412. doi: 10.1002/bit.21782. PubMed DOI

Ragusa A., Garcia I., Penades S. Nanoparticles as Nonviral Gene Delivery Vectors. IEEE Trans. Nanobiosci. 2007;6:319–330. doi: 10.1109/TNB.2007.908996. PubMed DOI

Campelo J.M., Conesa T.D., Gracia M.J., Jurado M.J., Luque R., Marinas J.M., Romero A.A. Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chem. 2008;10:853–858. doi: 10.1039/b801754a. DOI

Hu X.G., Dong S.J. Metal nanomaterials and carbon nanotubes—Synthesis, functionalization and potential applications towards electrochemistry. J. Mater. Chem. 2008;18:1279–1295. doi: 10.1039/b713255g. DOI

Chen L., Sun J.Y., Zhu Z.S., Wu K.Y., Lj W.J., Liu H.M., Xu S. The adhesion and proliferation of bone marrow-derived mesenchymal stem cells promoted by nanoparticle surface. J. Biomater. Appl. 2013;27:525–536. doi: 10.1177/0885328211414750. PubMed DOI

Stazsek M., Siegel J., Rimpelova S., Lyutakov O., Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI

Marakova N., Humpolicek P., Kasparkova V., Capakova Z., Martinkova L., Bober P., Trchova M., Stejskal J. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017;396:169–176. doi: 10.1016/j.apsusc.2016.11.024. DOI

Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...