Surface Modification of Polymer Substrates for Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28934132
PubMed Central
PMC5666921
DOI
10.3390/ma10101115
PII: ma10101115
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial properties, laser treatment, nanoparticles, nanoscale design, plasma exposure, surface modification, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.
Zobrazit více v PubMed
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Brown B.N., Badylak S.F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater. 2013;9:4948–4955. doi: 10.1016/j.actbio.2012.10.025. PubMed DOI
Kylian O., Choukourov A., Biderman H. Nanostructured plasma polymers. Thin Solid Films. 2013;548:1–17. doi: 10.1016/j.tsf.2013.09.003. DOI
Velardi L., Lorusso A., Paladini F., Siciliano M.V., Giulio M., Raino A., Nassisi V. Modification of polymer characteristics by laser and ion beam. Radiat. Eff. Defects Solids. 2010;165:637–642. doi: 10.1080/10420151003729516. DOI
Bacakova L., Mares V., Bottone M.G., Pellicciari C., Lisa V., Svorcik V. Fluorine ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture. J. Biomed. Mater. Res. 2000;49:369–379. doi: 10.1002/(SICI)1097-4636(20000305)49:3<369::AID-JBM10>3.0.CO;2-W. PubMed DOI
Slepička P., Michaljaničová I., Slepičková Kasálková N., Kolská Z., Rimpelová S., Ruml T., Švorčík V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879.
Zong M.M., Gong Y.K. Fabrication and biocompatibility of cell outer membrane mimetic surfaces. Chin. J. Polym. Sci. 2011;29:53–64. doi: 10.1007/s10118-010-1019-1. DOI
Zarek S.K., Wang Y.M. Single-molecule imaging of protein adsorption mechanisms to surfaces. Microsc. Res. Tech. 2011;74:682–687. PubMed
Sharma I., Pattanayek S.K. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme. Biophys. Chem. 2017;226:14–22. doi: 10.1016/j.bpc.2017.03.011. PubMed DOI
Maitre J.L., Heisenberg C.P. The role of adhesion energy in controlling cell–cell contacts. Curr. Opin. Cell Biol. 2011;23:508–514. doi: 10.1016/j.ceb.2011.07.004. PubMed DOI PMC
Dhyani V., Singh N. Controlling the Cell Adhesion Property of Silk Films by Graft Polymerization. Appl. Mater. Interfaces. 2014;6:5005–5011. doi: 10.1021/am4060595. PubMed DOI
McCarthy C.L., Uchihara Y., Vlychou M., Grammatopoulos G., Athanasou N.A. Development of malignant lymphoma after metal-on-metal hip replacement: a case report and review of the literature. Skelet. Radiol. 2017;46:831–836. doi: 10.1007/s00256-017-2612-y. PubMed DOI
Baino F., Montealegre M.A., Orlygsson G., Novarja G., Vitale-Brovarone C. Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: A proof-of-concept study. J. Mater. Sci. 2017;52:9115–9128. doi: 10.1007/s10853-017-0837-8. DOI
Roy I. Biodegradable Polymers. J. Chem. Technol. Biotechnol. 2010;85:731. doi: 10.1002/jctb.2420. DOI
Bauer S., Schmuki P., von der Mark K. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces. J. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI
Santos E.R., Burini E.C., Wang S.H. UV-ozone generation from modified high intensity discharge mercury vapor lamps for treatment of indium tin oxide films. Ozone Sci. Eng. 2012;34:129–135. doi: 10.1080/01919512.2011.649132. DOI
Gregoire S., Boudinet M., Pelascini F., Surma F., Detalle V., Holl Y. Laser-induced breakdown spectroscopy for polymer identification. Anal. Bioanal. Chem. 2011;400:3331–3340. doi: 10.1007/s00216-011-4898-2. PubMed DOI
Gour N., Ngo K.X., Vebert-Nardin C. Anti-infectious surfaces achieved by polymer modification. Macromol. Mater. Eng. 2014;299:648–668. doi: 10.1002/mame.201300285. DOI
Reznickova A., Kvitek O., Kolarova K., Smejkalova Z., Svorcik V. Cell adhesion and proliferation on polytertafluoroethylene with plasma-metal and plasma-metal-carbon interfaces. Jpn. J. Appl. Phys. 2017;56:1–6. doi: 10.7567/JJAP.56.06GG03. DOI
Parizek M., Slepickova Kasalkova N., Bacakova L., Svindrych Z., Slepicka P., Bacakova M., Lisa V., Svorcik V. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances. BioMed Res. Int. 2013:371430. doi: 10.1155/2013/371430. PubMed DOI PMC
Bacakova L., Filova E., Rypacek F., Svorcik V., Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004;53:35–45. PubMed
Anselme K., Ponche A., Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials—Part 2: Biological aspects. J. Eng. Med. 2010;224:1487–1507. doi: 10.1243/09544119JEIM901. PubMed DOI
Bolle M., Lazare S. Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 1993;69:31–37. doi: 10.1016/0169-4332(93)90478-T. DOI
Borowiec A., Haugen H.K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 2003;82:4462–4464. doi: 10.1063/1.1586457. DOI
Granados E., Martinez-Calderon M., Gomez M., Rodriguez A., Olaizola S.M. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS) Opt. Express. 2017;25:15330–15335. doi: 10.1364/OE.25.015330. PubMed DOI
Kim H.C., Reinhardt H., Hillebrecht P., Hampp N.A. Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures. Adv. Mater. 2012;24:1994–1998. doi: 10.1002/adma.201200534. PubMed DOI
Slepicka P., Nedela O., Siegel J., Krajcar R., Kolska Z., Svorcik V. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014;8:459–466. doi: 10.3144/expresspolymlett.2014.50. DOI
Slepicka P., Nedela O., Sajdl P., Kolska Z., Svorcik V. Polyethylenenaphtalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI
Nedela O., Slepicka P., Sajdl P., Vesely M., Svorcik V. Ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017;49:25–33. doi: 10.1002/sia.6054. DOI
Krajcar R., Siegel J., Slepicka P., Fitl P., Svorcik V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI
Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Teixeira A.I., Nealey P.F., Murphy C.J. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. A. 2004;71:369–376. doi: 10.1002/jbm.a.30089. PubMed DOI
Jager M., Sonntag F., Pietzsch M., Poll R., Rabenau M. Surface modification of polymers by using excimer laser for biomedical applications. Plasma Process. Polym. 2007;4:416–418. doi: 10.1002/ppap.200731011. DOI
Xu C., Yang F., Wang S., Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J. Biomed. Mater. Res. A. 2004;71:154–161. doi: 10.1002/jbm.a.30143. PubMed DOI
Ranucci C.S., Moghe P.V. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J. Biomed. Mater. Res. A. 2001;54:149–161. doi: 10.1002/1097-4636(200102)54:2<149::AID-JBM1>3.0.CO;2-O. PubMed DOI
Ko T.J., Jo W., Lee H.J., Oh K.H., Moon M.W. Nanostructures formed on carbon-based materials with different levels of crystallinity using oxygen plasma treatment. Thin Solid Films. 2015;590:324–329. doi: 10.1016/j.tsf.2015.02.040. DOI
Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. J. Biomater. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI
Duncan A.C., Rouais F., Lazare S., Bordenave L., Baquey C. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloid Surf. B. 2007;54:150–159. doi: 10.1016/j.colsurfb.2006.09.013. PubMed DOI
Yim E.K.F., Reano R.M., Pang S.W., Yeec A.F., Chen C.S., Leong K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC
Dalby M.J., Riehle M.O., Johnstone H., Affrossman S., Curtis A.S.G. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol. Int. 2004;28:229–236. doi: 10.1016/j.cellbi.2003.12.004. PubMed DOI
Chelli B., Barbalinardo M., Valle F., Greco P., Bysternova E., Bianchi M., Biscarini F. Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus. 2014:4. doi: 10.1098/rsfs.2013.0041. PubMed DOI PMC
Recknor J.B., Recknor J.C., Sakaguchi D.S., Mallapragada S.K. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials. 2004;25:2753–2767. doi: 10.1016/j.biomaterials.2003.11.045. PubMed DOI
Michaljaničová I., Slepička P., Veselý M., Kolská Z., Švorčík V. Nanowires and nanodots prepared with polarized KrF laser on polyethersulphone. Mater. Lett. 2015;144:15–18. doi: 10.1016/j.matlet.2015.01.007. DOI
Walachova K., Bacakova L., Dvorankova B., Svorcik V. Biocompatibility of polymers modified by high-energy ions. Chem. Listy. 2002;96:19–24.
Carella E., Leon M., Sauvage T., Gonzalez M. On ion implantation and damage effect in Li 2 TiO 3 as a fusion breeder blanket: A technological approach for degradation testing. Fusion Eng. Des. 2014;89:1529–1533. doi: 10.1016/j.fusengdes.2014.02.072. DOI
Chang Z., Laverne J.A. Hydrogen production in gamma-ray and helium-ion radiolysis of polyethylene, polypropylene, poly(methyl-methacrylate) and polystyrene. J. Polym. Sci. Polym. Chem. 2000;38:1656–1661. doi: 10.1002/(SICI)1099-0518(20000501)38:9<1656::AID-POLA31>3.0.CO;2-S. DOI
Nikolaev A.G., Yushkov G.Y., Oks E.M., Oztarhan A., Akpek A., Hames-Kocabas E., Urkas E.S., Brown I.G. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Appl. Surf. Sci. 2014;310:51–55. doi: 10.1016/j.apsusc.2014.04.002. DOI
Bacakova L., Svorcik V., Rybka V., Micek I., Hnatowicz V., Lisa V., Kocourek F. Adhesion and proliferation of cultured human aortic smooth muscle cells on polystyrene implanted with N+, F+ and Ar+ ions: Correlation with polymer surface polarity and carbonization. Biomaterials. 1996;17:1121–1126. doi: 10.1016/0142-9612(96)85914-X. PubMed DOI
Shekhawat N., Aggarwal S., Sharma A., Nair K.G.M. Surface hardening in N+ implanted polycarbonate. J. Mater. Sci. 2015;50:3005–3013. doi: 10.1007/s10853-015-8817-3. DOI
Avalos A., Haza A.I., Morales P. Cytotoxicity of silver nanoparticles on tumoral and normal human cells. Toxicol. Lett. 2012;211:202–203. doi: 10.1016/j.toxlet.2012.03.727. DOI
Hayes J.S., Czekanska E.M., Richards R.G. In: Tissue Engineering III: Cell-Surface Interactions For Tissue Culture. 1st ed. Kasper C., Witte F., Pörtner R., editors. Volume 126. Springer; Heidelberg, Germany: 2012. p. 1.
Gosau M., Haupt M., Thude S., Strowitzki M., Schminke B., Buergers R. Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2016;104:1571–1579. doi: 10.1002/jbm.b.33376. PubMed DOI
Kim R.S. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000;77:1913–1920. doi: 10.1002/1097-4628(20000829)77:9<1913::AID-APP7>3.0.CO;2-#. DOI
Svorcik V., Proskova K., Hnatowicz V., Rybka V. Iodine penetration and doping of ion-modified polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. B. 1999;149:312–318. doi: 10.1016/S0168-583X(98)00942-2. DOI
Predeep P., Mathew A.M. Intrinsically conducing rubbers: toward micro applications. Rubber Chem. Technol. 2011;84:366–401.
Svorcik V., Proskova K., Rybka V., Hnatowicz V. Water diffusion in polyethylene modified by ion irradiation. Polym. Degrad. Stab. 1998;60:431–435. doi: 10.1016/S0141-3910(97)00104-3. DOI
Svorcik V., Rybka V., Hnatowicz V., Bacakova L. Polarity, resistivity and biocompatibility of polyethylene doped with carbon black. J. Mater. Sci. Lett. 1995;14:1723–1724. doi: 10.1007/BF00270988. DOI
Svorcik V., Arenholz E., Rybka V., Hnatowicz V. AFM surface morphology investigation of ion beam modified polyimide. Nucl. Instrum. Methods Phys. Res. Sect. B. 1997;122:663–667. doi: 10.1016/S0168-583X(96)00829-4. DOI
Paterbauer T., Yakunin S., Siegel J. Heitz, Dynamics of the alignment of mammalian cells on a nano-structured polymer surface. J. Modern Trends Polym. Sci.—EPF 09. 2010;296:272–277.
Mattioli S., Martino S., D’Angelo F., Emiliani C., Kenny J.M., Armenato I. Nanostructured polystyrene films engineered by plasma processes: Surface characterization and stem cell interaction. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40427. DOI
Svorcik V., Endrst R., Rybka V., Hnatowicz V. Time dependence of the number of unpaired electrons and the sheet resistance in ion irradiated polymers. Mater. Lett. 1996;28:441–444. doi: 10.1016/0167-577X(96)00097-3. DOI
Alonso J.L., Goldmann W.H. Cellular mechanotransduction. AIMS Biophys. 2016;3:50–62. doi: 10.3934/biophy.2016.1.50. DOI
Gencer G.M., Karadeniz S., Lambrecht F.Y., Havitcioglu H., Ozkal S., Baskin H. The effects of plasma immersion ion implantation and deposition (PIII&D) process voltages on the morphology, phase formation and E. coli adhesion of Ag coatings obtained on the surface of Ti6Al4V orthopedic implant material in nitrogen plasma. J. Fac. Eng. Archit. Gazi. 2017;32:231–241.
Chvatalova L., Cermak R., Mracek A., Grulich O., Vesel A., Ponozil P., Minarik A., Cvelbar U., Benicek L., Sajdl P. The effect of plasma treatment on structure and properties of poly(1-buten) surface. Eur. Polym J. 2012;48:866–874. doi: 10.1016/j.eurpolymj.2012.02.007. DOI
Junkar I. Plasma treatment of amorphous and semicrystalline polymers for improved biocompatibility. J. Vac. 2013;98:111–115. doi: 10.1016/j.vacuum.2012.11.006. DOI
Kessler F., Steffens D., Lando G.A., Pranke P., Weibel D.E. Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes. J. Tissue Eng. Regen. Med. 2014;11:23–31. doi: 10.1007/s13770-013-1117-6. DOI
Bax D.V., McKenzie D.R., Bilek M.M.M., Weiss A.S. Directed cell attachment by tropoelastin on masked plasma immersion ion implantation treated PTFE. Biomaterials. 2011;32:6710–6718. doi: 10.1016/j.biomaterials.2011.05.060. PubMed DOI
Barkusky F., Bayer A., Mann K. Ablation of polymers by focused EUV radiation from a table-top laser-produced plasma source. Appl. Phys. A Mater. Sci. Process. 2011;105:17–23. doi: 10.1007/s00339-011-6540-8. DOI
Siegel J., Reznickova A., Chaloupka A., Slepicka P., Svorcik V. Ablation and water etching of plasma treated polymers. Radiat. Eff. Defects Solids. 2008;163:779–788. doi: 10.1080/10420150801969654. DOI
Kutasi K., Bibinov N., von Keudell A., Wiesermann K. Wettabilities of plasma deposited polymer films. J. Optoelectron. Adv. Mater. 2005;7:2549–2556.
Wilson D.J., Pond R.C., Williams R.L. Wettability of chemically modified polymers: experiment and theory. Interface Sci. 2000;8:389–399. doi: 10.1023/A:1008735929894. DOI
Huang X., Li C.C., Zhu W.X., Zhang D., Guan G.H., Xiao Y.N. Ultraviolet-induced crosslinking of poly(butylene succinate) and its thermal property, dynamic mechanical property, and biodegradability. Polym. Adv. Technol. 2011;22:648–656. doi: 10.1002/pat.1560. DOI
Reznickova A., Novotna Z., Kolska Z., Slepickova Kasalkova N., Rimpelova S., Svorcik V. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Mater. Sci. Eng. C. 2015;52:259–266. doi: 10.1016/j.msec.2015.03.052. PubMed DOI
Nedela O., Slepicka P., Kolska Z., Slepickova Kasalkova N., Sajdl P., Vesely M., Svorcik V. Functionalized polyethylene naphthalate for cytocompatibility improvement. React. Funct. Polym. 2016;100:44–52. doi: 10.1016/j.reactfunctpolym.2016.01.004. DOI
Metz R.P., Patterson J.J., Wilson E. Vascular Smooth Muscle Cells: Isolation, Culture, and Characterization. Methods Mol. Biol. 2012;843:169–176. PubMed
Zimmermanm R., Birkert O., Gauglitz G., Werner C. Electrosurface phenomena at polymer films for biosensor applications. ChemPhysChem. 2003;4:509–514. doi: 10.1002/cphc.200200475. PubMed DOI
Kirby B.J., Hasselbrink E.F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis. 2004;25:187–202. doi: 10.1002/elps.200305754. PubMed DOI
Grancaric A.M., Tarbuk A., Pusic T. Electrokinetic properties of textile fabrics. Color Technol. 2005;121:221–227. doi: 10.1111/j.1478-4408.2005.tb00277.x. DOI
Kolska Z., Reznickova A., Nagyova M., Slepickova Kasalkova N., Sajdl P., Slepicka P., Svorcik V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI
Slepička P., Peterková L., Rimpelová S., Pinkner A., Slepičková Kasálková N., Kolská Z., Ruml T., Švorčík V. Plasma activation of perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Slepicka P., Trostova S., Slepickova Kasalkova N., Kolska Z., Malinsky P., Mackova A., Bacakova L., Svorcik V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stab. 2012;97:1075–1082. doi: 10.1016/j.polymdegradstab.2012.04.013. DOI
Olivares-Navarrete R., Hyzy S.L., Gittens R.A., Schneider J.M., Haithcock D.A., Ullrich P.F., Slosar P.J., Schwartz Z., Boyan B.D. Rough titanium alloys regulate osteoblast production of angiogenic factors. J. Spine. 2013;13:1563–1570. doi: 10.1016/j.spinee.2013.03.047. PubMed DOI PMC
Ellinas K., Tserepi A., Gogolides E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Langmuir. 2011;27:3960–3969. doi: 10.1021/la104481p. PubMed DOI
Tsougeni K., Vourdas N., Tserepi A., Gogolides E. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: From stable super hydrophilic to super hydrophobic surfaces. Langmuir. 2009;25:11748–11759. doi: 10.1021/la901072z. PubMed DOI
Gianneli M., Tsougeni K., Grammoustianou A., Tserepi A., Gogolides E., Gizeli E. Nanostructured PMMA-coated Love wave device as a platform for protein adsorption studies. Sens. Actuators B. 2016;236:583–590. doi: 10.1016/j.snb.2016.05.120. DOI
Dimitrakellis P., Travlos A., Psycharis V.P., Gogolides E. Superhydrophobic Paper by Facile and Fast Atmospheric Pressure Plasma Etching. Plasma Process. Polym. 2017;14 doi: 10.1002/ppap.201600069. DOI
Ellinas K., Tsougeni K., Petrou P.S., Boulousis G., Tsoukleris D., Pavlatou E., Tserepi A., Kakabakos S.E., Gogolides E. Three-dimensional plasma micro–nanotextured cyclo-olefin-polymer surfaces for biomolecule immobilization and environmentally stable superhydrophobic and superoleophobic behavior. Chem. Eng. J. 2016;300:394–403. doi: 10.1016/j.cej.2016.04.137. DOI
Ellinas K., Pujari S.P., Dragatogiannis D.A., Charitidis C.A., Tserepi A., Zuilhof H., Gogolides E. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS Appl. Mater. Interfaces. 2014;6:6510–6524. doi: 10.1021/am5000432. PubMed DOI
Gogolides E., Ellinas K., Tserepi A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 2015;132:135–155. doi: 10.1016/j.mee.2014.10.002. DOI
Leite A.J., Mano J.F. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J. Mater. Chem. B. 2017;5:4555–4568. doi: 10.1039/C7TB00404D. PubMed DOI
Carvalho A.L., Vale A.C., Sousa M.P., Barbosa A.M., Torrado E., Mano J.F., Alves N.M. Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. J. Mater. Chem. B. 2016;4:5385–5393. doi: 10.1039/C6TB00841K. PubMed DOI
Tsougeni K., Petrou P.S., Awsiuk K., Marzec M.M., Ioannidis N., Petrouleas V., Tserepi A., Kakabakos S.E., Gogolides E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces. 2015;7:14670–14681. doi: 10.1021/acsami.5b01754. PubMed DOI
Slepičková Kasálková N., Slepička P., Kolská Z., Hodačová P., Kučková Š., Švorčík V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014;9 doi: 10.1186/1556-276X-9-161. PubMed DOI PMC
Bilek M.M., McKenzie D.R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys. Rev. 2010;2:55–65. doi: 10.1007/s12551-010-0028-1. PubMed DOI PMC
Bilek M.M., Bax D.V., Kondyurin A., Yin Y., Nosworthy N.J., Fisher K., Waterhouse A., Weiss A.S., dos Remedios C.G., McKenzie D.R. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Sci. USA. 2011;108:14405–14410. doi: 10.1073/pnas.1103277108. PubMed DOI PMC
Schober J.M., Komarova Y.A., Chaga O.Y., Akhmanova A., Borisy G.G. Microtubule-targeting-dependent reorganization of filopodia. J. Cell Sci. 2007;120:1235–1244. doi: 10.1242/jcs.003913. PubMed DOI
Kim J., Lee J., Kwon S., Jeong S. Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J. Nanosci. Nanotechnol. 2009;9:1098–1102. doi: 10.1166/jnn.2009.C096. PubMed DOI
Shukla R., Bansal V., Chaudhary M., Basu A., Bhonde R.R., Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21:10644–10654. doi: 10.1021/la0513712. PubMed DOI
Parizek M., Kasalkova N., Bacakova L., Slepicka P., Blazkova M., Svorcik V. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles. Int. J. Mol. Sci. 2009;10:4352–4374. doi: 10.3390/ijms10104352. PubMed DOI PMC
Oh W.K., Yoon H., Jang J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials. 2010;31:1342–1348. doi: 10.1016/j.biomaterials.2009.10.018. PubMed DOI
Tavangarian F., Li Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram. Int. 2012;38:6075–6090. doi: 10.1016/j.ceramint.2012.05.038. DOI
Liao C.Z., Li K., Wong H.M., Tong W.Y., Yeung K.W.K., Tjong S.C. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng. C. 2013;33:1380–1388. doi: 10.1016/j.msec.2012.12.039. PubMed DOI
Asakawa R., Nagashima S., Nakamura Y., Hasebe T., Suzuki T., Hotta A. Combining polymers with diamond-like carbon (DLC) for highly functionalized materials. Surf. Coat. Thechnol. 2011;206:676–685. doi: 10.1016/j.surfcoat.2011.02.064. DOI
Guerrouache M., Mahouche-Chergui S., Chehimi M.M., Carbonnier B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol–yne click photopatterning approach. Chem. Commun. 2012;48:7486–7488. doi: 10.1039/c2cc33134a. PubMed DOI
Guerra J., Herrero M.A., Carrion B., Perez-Martinez F.C., Lucio M., Rubio N. Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon. 2012;50:2832–2844. doi: 10.1016/j.carbon.2012.02.050. DOI
Jones M.R., Osberg K.D., Macfarlane R.J., Langille M.R., Mirkin C.A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011;111:3736–3827. doi: 10.1021/cr1004452. PubMed DOI
Reznickova A., Siegel J., Slavikova N., Kolska Z., Stazsek M., Svorcik V. Preparation of Ordered Silver Angular Nanoparticles Array in Copolymer Film for Surface Enhanced Raman Spectroscopy. React. Funct. Polym. 2016;105:1–8. doi: 10.1016/j.reactfunctpolym.2016.05.012. DOI
Chen W., Jie-Rong C., Lu R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Sci. 2008;254:2882–2888.
Reznickova A., Novotna Z., Kolska Z., Svorcik V. Immobilization of silver nanoparticles on polyethylene terephthalate. Nanoscale Res. Lett. 2014;9 doi: 10.1186/1556-276X-9-305. PubMed DOI PMC
Ferreira A., Pedrosa P., Lanceros-Mendez S., Machado A.V., Vaz F. Activation of polyethylene terephthalate using different plasma treatments. J. Optoelectron. Adv. Mater. 2010;12:1581–1589.
Slepickova Kasalkova N., Slepicka P., Kolska Z., Sajdl P., Bacakova L., Rimpelova S., Svorcik V. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles. Nucl. Instrum. Methods Phys. Res. B. 2012;272:391–395. doi: 10.1016/j.nimb.2011.01.108. DOI
Vesel A., Semenic T. Etching rates of different polymers and oxygen plasma = Study of the etching rate of various polymers in oxygen plasma. Mater. Technol. 2012;46:227–231. (In Slovenian)
Svorcik V., Makajova Z., Slepickova Kasalkova N., Kolska Z., Zakova P., Karpiskova J., Stibor I., Slepicka P. Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon. 2014;69:361–371. doi: 10.1016/j.carbon.2013.12.037. DOI
Satishkumar R., Vertegel A. Charge-directed targeting of antimicrobial protein-nanoparticle conjugates. Biotechnol. Bioeng. 2008;100:403–412. doi: 10.1002/bit.21782. PubMed DOI
Ragusa A., Garcia I., Penades S. Nanoparticles as Nonviral Gene Delivery Vectors. IEEE Trans. Nanobiosci. 2007;6:319–330. doi: 10.1109/TNB.2007.908996. PubMed DOI
Campelo J.M., Conesa T.D., Gracia M.J., Jurado M.J., Luque R., Marinas J.M., Romero A.A. Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chem. 2008;10:853–858. doi: 10.1039/b801754a. DOI
Hu X.G., Dong S.J. Metal nanomaterials and carbon nanotubes—Synthesis, functionalization and potential applications towards electrochemistry. J. Mater. Chem. 2008;18:1279–1295. doi: 10.1039/b713255g. DOI
Chen L., Sun J.Y., Zhu Z.S., Wu K.Y., Lj W.J., Liu H.M., Xu S. The adhesion and proliferation of bone marrow-derived mesenchymal stem cells promoted by nanoparticle surface. J. Biomater. Appl. 2013;27:525–536. doi: 10.1177/0885328211414750. PubMed DOI
Stazsek M., Siegel J., Rimpelova S., Lyutakov O., Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI
Marakova N., Humpolicek P., Kasparkova V., Capakova Z., Martinkova L., Bober P., Trchova M., Stejskal J. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017;396:169–176. doi: 10.1016/j.apsusc.2016.11.024. DOI
Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI
Amine modification of calcium phosphate by low-pressure plasma for bone regeneration
PEGylated Gold Nanoparticles Grafted with N-Acetyl-L-Cysteine for Polymer Modification
Methods of Gold and Silver Nanoparticles Preparation