Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33668477
PubMed Central
PMC7918735
DOI
10.3390/ma14040889
PII: ma14040889
Knihovny.cz E-zdroje
- Klíčová slova
- cell viability, cytocompatibility, fluorinated ethylene propylene, honeycomb-like pattern, plasma treatment, polystyrene,
- Publikační typ
- časopisecké články MeSH
The development of new biocompatible polymer substrates is still of interest to many research teams. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with a technique of improved phase separation. Plasma exposure served for substrate activation and modification of surface properties, such as roughness, chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from polystyrene solution. The properties of the pattern strongly depended on the primary plasma exposure of the FEP substrate. The physico-chemical properties such as changes of the surface chemistry, wettability, and morphology of the prepared pattern were determined. The cell response of primary fibroblasts and osteoblasts was studied on a honeycomb pattern. The prepared honeycomb-like pattern from polystyrene showed an increase in cell viability and a positive effect on cell adhesion and proliferation for both primary fibroblasts and osteoblasts.
Zobrazit více v PubMed
Vacanti C.A. The history of tissue engineering. J. Cell Mol. Med. 2006;10:569–576. doi: 10.1111/j.1582-4934.2006.tb00421.x. PubMed DOI PMC
Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D.S. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci. 2011;2011:290602. doi: 10.1155/2011/290602. DOI
Ma P.X. Scaffolds for tissue fabrication. Mater. Today. 2004;7:30–40. doi: 10.1016/S1369-7021(04)00233-0. DOI
Neděla O., Slepička P., Švorčík V. Surface modification of polymer substrates for biomedical applications. Materials. 2017;10:1115. doi: 10.3390/ma10101115. PubMed DOI PMC
Žáková P., Kasálková N.S., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. doi: 10.1016/j.apsusc.2017.06.089. DOI
Kasálková N.S., Slepička P., Kolská Z., Sajdl P., Bačáková L., Rimpelová S., Švorčík V. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam. 2012;272:391–395. doi: 10.1016/j.nimb.2011.01.108. DOI
Bačáková L., Filová E., Pařízek M., Ruml T., Švorčík V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotech. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Chen S., Guo Y., Liu R., Wu S., Fang J., Huang B., Chen Z. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloid Surf. B-Biointerfaces. 2018;164:58–69. doi: 10.1016/j.colsurfb.2018.01.022. PubMed DOI
Kumar S., Nehra M., Kedia D., Dilbaghi N., Tankeshwar K., Kim K.H. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;106:110154. doi: 10.1016/j.msec.2019.110154. PubMed DOI
Qiu Z.Y., Cui Y., Wang X.M. Natural bone tissue and its biomimetic. In: Wang X.M., Qiu Z.Y., Cui H., editors. Mineralized Collagen Bone Graft Substitutes. Woodhead Publishing; Cambridge, UK: 2019. pp. 1–22.
Baptista D., Teixeira L., van Blitterswijk C., Giselbrecht S., Truckenmüller R. Overlooked? Underestimated? Effects of substrate curvature on cell behavior. Trends Biotechnol. 2019;37:838–854. doi: 10.1016/j.tibtech.2019.01.006. PubMed DOI
Ermis M., Antmen E., Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018;3:355–369. doi: 10.1016/j.bioactmat.2018.05.005. PubMed DOI PMC
Ferrari M., Cirisano F., Morán M.C. Review: Mammalian cell behavior on hydrophobic substrates: Influence of surface properties. Colloids Interfaces. 2019;3:48. doi: 10.3390/colloids3020048. DOI
Donoso M.G., Méndez-Vilas A., Bruque J.M., González-Martin M.L. On the relationship between common amplitude surface roughness parameters and surface area: Implications for the study of cell–material interactions. Int. Biodeter. Biodegr. 2007;59:245–251. doi: 10.1016/j.ibiod.2006.09.011. DOI
Gittens R.A., Olivares-Navarette R., Schwartz Z., Boyan B.D. Implant osseointegration ant the role of microroughness and nanostructures? Lessons for spine implants. Acta Biomater. 2014;10:3363–3371. doi: 10.1016/j.actbio.2014.03.037. PubMed DOI PMC
Sammons R.L., Lumbikanonda N., Gross M., Cantzler P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clin. Oral. Implants Res. 2005;16:657–666. doi: 10.1111/j.1600-0501.2005.01168.x. PubMed DOI
Boyan B.D., Bonewald L.F., Paschalis E.P., Lohmann C.H., Rosser J., Cochran D.L., Dean D.D., Schwartz Z., Boskey A.L. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif. Tissue. Int. 2002;71:519–529. doi: 10.1007/s00223-001-1114-y. PubMed DOI
Stevens M.M., George J.H. Exploring and engineering the cell surface interface. Science. 2005;310:1135–1138. doi: 10.1126/science.1106587. PubMed DOI
Chung T.W., Liu D.Z., Wang S.Y., Wang S.S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials. 2003;24:4655–4661. doi: 10.1016/S0142-9612(03)00361-2. PubMed DOI
Lord M.S., Foss M., Besenbacher F. Review: Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today. 2010;6:66–78. doi: 10.1016/j.nantod.2010.01.001. DOI
Rahmati M., Silva E.A., Reseland J.E., Heyward C.A., Haugen H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020;49:5178. doi: 10.1039/D0CS00103A. PubMed DOI
Metwally S., Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater. Sci. Eng. C. 2019;104:109883. doi: 10.1016/j.msec.2019.109883. PubMed DOI
Masui M., Takata H., Kominami T. Cell adhesion and the negative cell surface charges in embryonic cells of the starfish Asterina pectinifera. Electrophoresis. 2002;23:2087–2095. doi: 10.1002/1522-2683(200207)23:13<2087::AID-ELPS2087>3.0.CO;2-R. PubMed DOI
Stoltz J.F., Boisseau M., Muller S., Wang X., Legrand S., Labrador M.V. Hemorheology and vascular endothelial cells. J. Mal. Vasc. 1999;24:99–109. PubMed
Lee J.H., Jung H.W., Kang I.K., Lee H.B. Cell behaviour on polymer surfaces with different functional groups. Biomaterials. 1994;15:705–711. doi: 10.1016/0142-9612(94)90169-4. PubMed DOI
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI
Liu L., Chen S., Giachelli C.M., Ratner B.D., Jiang S. Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. J. Biomed. Mater. Res. A. 2005;74:23–31. doi: 10.1002/jbm.a.30221. PubMed DOI
Wu X., Jones M.D., Davidson M.G., Chaudhuri J.B., Ellis M.J. Surfactant-free poly (lactide-co-glycolide) honeycomb films for tissue engineering: Relating solvent, monomer ratio and humidity to scaffold structure. Biotechnol. Lett. 2011;33:423–430. doi: 10.1007/s10529-010-0438-y. PubMed DOI
Yabu H. Fabrication of honeycomb films by the breath figure technique and their applications. Sci. Technol. Adv. Mater. 2018;19:802–822. doi: 10.1080/14686996.2018.1528478. DOI
Sunami H., Ito E., Tanaka M., Yamamoto S., Shimomura M. Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. Colloid Surf. A-Physicochem. Eng. Asp. 2006;284:548–551. doi: 10.1016/j.colsurfa.2005.11.041. DOI
Nishikawa T., Ookura R., Nishida J., Arai K., Hayashi J., Kurono N., Shimomura M. Fabrication of honeycomb film of an amphiphilic copolymer at the air−water interface. Langmuir. 2002;18:5734–5740. doi: 10.1021/la011451f. DOI
Gentsch R., Börner H.G. Designing three-dimensional materials at the interface to biology. In: Börner H.G., Lutz J.F., editors. Bioactive Surfaces. Springer; Heidelberg, Germany: 2010. pp. 163–192.
Dong C., Hao J. Comprehensive Supramolecular Chemistry II. Elsevier; Amsterdam, The Netherlands: 2017. Honeycomb films with ordered patterns and structures. DOI
Wu X., Wang S. Regulating MC3T3-E1 cells on deformable poly (ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl. Mater. Interfaces. 2012;4:4966–4975. doi: 10.1021/am301334s. PubMed DOI
Kawano T., Sato M., Yabu H., Shimomura M. Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): Uniform porous polymer scaffolds prepared by the breath figure technique. Biomater. Sci. 2014;2:52–56. doi: 10.1039/C3BM60195A. PubMed DOI
Widawski G., Rawiso M., François B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature. 1994;369:387–389. doi: 10.1038/369387a0. DOI
Yang S.Y., Kim E.S., Jeon G., Choi K.Y., Kim J.K. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability. Mater. Sci. Eng. C-Mater. Biol. Appl. 2013;33:1689–1695. doi: 10.1016/j.msec.2012.12.081. PubMed DOI
Guo L., Kawazoe N., Hoshiba T., Tateishi T., Chen G., Zhang X. Osteogenic differentiation of human mesenchymal stem cells on chargeable polymer-modified surfaces. J. Biomed. Mater. Res. A. 2008;87:903–912. doi: 10.1002/jbm.a.31834. PubMed DOI
Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI
Sun L., Pereira D., Wang Q., Barata D.B., Truckenmüller R., Li Z., Xu X., Habibovic P. Controlling growth and osteogenic differentiation of osteoblasts on microgrooved polystyrene surfaces. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0161466. PubMed DOI PMC
Lerman M.J., Lembong J., Muramoto S., Gillen G., Fisher J.P. The evolution of polystyrene as a cell culture material. Tissue Eng. Part B Rev. 2018;24:359–372. doi: 10.1089/ten.teb.2018.0056. PubMed DOI PMC
Huang C., Shen X., Liu X., Chen Z., Shu B., Wan L., He J. Hybrid breath figure method: A new insight in Petri dishes for cell culture. J. Colloid Interface Sci. 2019;541:114–122. doi: 10.1016/j.jcis.2019.01.074. PubMed DOI
Catauro M., Tranquillo E., Dal Poggetto G., Naviglio S., Barrino F. Antibacterial properties of sol–gel biomaterials with different percentages of PEG or PCL. Macromol. Symp. 2020;389:1900056. doi: 10.1002/masy.201900056. DOI
Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013;233:99–107. doi: 10.1016/j.surfcoat.2013.02.042. DOI
Gangal S.V., Brothers P.D. Encyclopedia of Polymer Science and Technology. 4th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2002. Perfluorinated polymers, perfluorinated ethylene–propylene copolymers; pp. 1–15.
Slepička P., Peterková L., Rimpelová S., Pinkner A., Kasálková N.S., Kolská Z., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Peterková L., Rimpelová S., Křížová I., Slepička P., Kasálková N.S., Švorčík V., Ruml T. Biocompatibility of Ar plasma-treated fluorinated ethylene propylene: Adhesion and viability of human keratinocytes. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;100:269–275. doi: 10.1016/j.msec.2019.02.100. PubMed DOI
Peterková L., Rimpelová S., Slepička P., Křížová I., Kasálková N.S., Švorčík V., Ruml T. Argon plasma-treated fluorinated ethylene propylene: Growth of primary dermal fibroblasts and mesenchymal stem cells. Tissue Cell. 2019;58:121–129. doi: 10.1016/j.tice.2019.05.004. PubMed DOI
Slepička P., Neznalová K., Fajstavr D., Slepičková Kasálková N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Slepička P., Trostová S., Slepičková Kasálková N., Kolská Z., Sajdl P., Švorčík V. Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process. Polymers. 2012;9:197–206. doi: 10.1002/ppap.201100126. DOI
Novotná Z., Řezníčková A., Rimpelová S., Veselý M., Kolská Z., Švorčík V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Advances. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI
Juřík P., Slepička P., Mistrík J., Janíček P., Rimpelová S., Kolská Z., Švorčík V. Oriented gold ripple-like structures on poly-l-lactic acid. Appl. Surf. Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI
Bui V.T., Tran Q.C., Nguyen V.T., Dao V.D., Choi J.S., Choi H.S. Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017;320:561–569. doi: 10.1016/j.cej.2017.03.086. DOI
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. PLLA Honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers. 2020;12:2436. doi: 10.3390/polym12112436. PubMed DOI PMC
Antibacterial properties of bimetallic nanopattern induced by excimer laser on PTFE nanotextile
Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser
Biopolymer Honeycomb Microstructures: A Review
The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid
Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer