The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36433071
PubMed Central
PMC9698802
DOI
10.3390/polym14224944
PII: polym14224944
Knihovny.cz E-zdroje
- Klíčová slova
- excimer laser, gold nanocluster, honeycomb, immobilization, morphology, nanostructure, polystyrene,
- Publikační typ
- časopisecké články MeSH
In this article, we present a unique combination of techniques focusing on the immobilization of noble metal nanoparticles into a honeycomb polystyrene pattern prepared with the improved phase-separation technique. The procedure consists of two main steps: the preparation of the honeycomb pattern (HCP) on a perfluoroethylenepropylene substrate (FEP), followed by an immobilization procedure realized by the honeycomb pattern's exposure to an excimer laser in a noble metal nanoparticle solution. The surface physico-chemical properties, mainly the surface morphology and chemistry, are characterized in detail in the study. The two-step procedure represents the unique architecture of the surface immobilization process, which reveals a wide range of potential applications, mainly in tissue engineering, but also as substrates for analytical use.
Zobrazit více v PubMed
Male U., Shin B.K., Huh D.S. Coupling of breath figure method with interfacial polymerization: Bottom-surface functionalized honeycomb-patterned porous films. Polymer. 2017;119:206–211. doi: 10.1016/j.polymer.2017.05.038. DOI
Rodríguez-Hernández J. Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 2015;42:1–41. doi: 10.1016/j.progpolymsci.2014.07.008. DOI
Bui V.T., Ko S.H., Choi H.S. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. ACS Appl. Mater. Interf. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI
Bui V.T., Ko S.H., Choi H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014;50:3817–3819. doi: 10.1039/c3cc48654k. PubMed DOI
Bui V.T., Lee H.S., Choi J.H., Choi H.S. Highly ordered and robust honeycomb films with tunable pore sizes fabricated via UV crosslinking after applying improved phase separation. Polymer. 2015;74:46–53. doi: 10.1016/j.polymer.2015.07.056. DOI
Munoz-Bonilla A., Fernández-García M., Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI
Fajstavrová K., Rimpelová S., Fajstavr D., Švorčík V., Slepička P. Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene. Materials. 2021;14:889. doi: 10.3390/ma14040889. PubMed DOI PMC
Slepička P., Neznalová K., Fajstavr D., Kasálková N.S., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Proc. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Neznalová K., Fajstavr D., Rimpelová S., Kasálková N.S., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Deg. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI
Neznalová K., Sajdl P., Švorčík V., Slepička P. Cellulose acetate honeycomb-like pattern created by improved phase separation. eXPRESS Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI
Heng L., Wang B., Li M., Zhang Y., Jiang L. Advances in Fabrication Materials of Honeycomb Structure Films by the Breath-Figure Method. Materials. 2013;6:460–482. doi: 10.3390/ma6020460. PubMed DOI PMC
Hurtuková K., Fajstavrová K., Rimpelová S., Vokatá B., Fajstavr D., Kasálková N.S., Siegel J., Švorčík V., Slepička P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials. 2021;14:4051. doi: 10.3390/ma14144051. PubMed DOI PMC
Siegel J., Savenkova T., Pryjmaková J., Slepička P., Šlouf M., Švorčík V. Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids. Materials. 2021;14:3263. doi: 10.3390/ma14123263. PubMed DOI PMC
Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Rebollar E., Castillejo M., Ezquerra T.A. Laser Induced Periodic Surface Structures on Polymer Films: From Fundamentals to Applications. Eur. Polym. J. 2015;73:162–174. doi: 10.1016/j.eurpolymj.2015.10.012. DOI
Chen H.Y., Liu J.L., Xu W.C., Wang Z.F., Wang C.Y., Zhang M. Selective assembly of silver nanoparticles on honeycomb films andtheir surface-enhanced Raman scattering, Colloids and Surfaces A: Physicochem. Eng. Asp. 2016;506:782–788. doi: 10.1016/j.colsurfa.2016.07.043. DOI
Galeotti F., Hartmann L., Botta C. Robust surface patterning by parylene-reinforced breath figures: An enabling tool for liquid crystal microcell arrays. J. Colloid Interf. Sci. 2016;465:47–53. doi: 10.1016/j.jcis.2015.11.053. PubMed DOI
Kim T.H., Kim M., Manda R., Lim Y.J., Cho K.J., Hee H., Kang J.W., Lee G.D., Lee S.H. Flexible Liquid Crystal Displays Using Liquid Crystal-Polymer Composite Film and Colorless Polyimide Substrate. Curr. Opt. Photonics. 2019;3:66–71.
Le T.H., Mai U.K.G., Huynh D.P., Nguyen H.T., Luu A.T., Bui V.T. Surfactant-free GO-PLA nanocomposite with honeycomb patterned surface for high power antagonistic bio-triboelectric nanogenerator. J. Sci. Adv. Mater. Dev. 2022;7:100392. doi: 10.1016/j.jsamd.2021.08.005. DOI
Zhang S., Xu T., Chai S., Zhang L., Wu L., Li H. Supramolecular star polymer films with tunable honeycomb structures templated by breath figures. Polymer. 2017;117:306–314. doi: 10.1016/j.polymer.2017.04.048. DOI
Huh M., Gauthier M., Yun S.I. Honeycomb structured porous films prepared from arborescent graft polystyrenes via the breath figures method. Polymer. 2016;107:273–281. doi: 10.1016/j.polymer.2016.11.032. DOI
Yuan M.S., Xu W., He Q.G., Cheng J.G., Fu Y.Y. Research progress of breath figure method in device application. Chin. J. Analytic. Chem. 2022;50:44–52. doi: 10.1016/j.cjac.2021.11.006. DOI
Slepička P., Elashnikov R., Ulbrich P., Staszek M., Kolská Z., Švorčík V. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J. Nanopart. Res. 2015;17:11–26. doi: 10.1007/s11051-014-2850-z. DOI
Siegel J., Grossberger D., Pryjmaková J., Šlouf M., Švorčík V. Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly(ethylene terephthalate) Nanomaterials. 2022;12:792. doi: 10.3390/nano12050792. PubMed DOI PMC
Ou Y., Wang L.Y., Zhu L.W., Wan L.S., Xu Z.K. In-situ immobilization of silver nanoparticles on self-assembled honeycomb-patterned films enables surface-enhanced Raman scattering (SERS) substrates. J. Phy. Chem. C. 2014;118:11478–11484. doi: 10.1021/jp503166g. DOI
Falak S., Shin B.K., Yabu H., Huh D.S. Fabrication and characterization of pore-selective silver-functionalized honeycomb-patterned porous film and its application for antibacterial activity. Polymer. 2022;244:124646. doi: 10.1016/j.polymer.2022.124646. DOI
Liao Z., Ma Y., Yao S., Zhang J., Han Y., Xu K. Honeycomb-patterned porous graphene film for electrochemical detection of dopamine. Appl. Surf. Sci. 2022;605:154725. doi: 10.1016/j.apsusc.2022.154725. DOI
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Fajstavr D., Neznalová K., Kasálková N.S., Rimpelová S., Kubičíková K., Švorčík V., Slepička P. Nanostructured Polystyrene Doped with Acetylsalicylic Acid and Its Antibacterial Properties. Materials. 2020;13:3609. doi: 10.3390/ma13163609. PubMed DOI PMC
Reznickova A., Chaloupka A., Heitz J., Kolska Z., Svorcik V. Surface properties of polymers treated with F-2 laser. Surf. Interface Anal. 2012;44:296–300. doi: 10.1002/sia.3801. DOI
Rebollar E., Perez S., Hernandez M., Domingo C., Martin M., Ezquerra T.A., Ruiz J.P.G., Castillejo M. Physicochemical modifications accompanying UV laser induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys. Chem. Chem. Phys. 2014;16:17551–17559. doi: 10.1039/C4CP02434F. PubMed DOI
Slepička P., Peterková L., Rimpelová S., Pinkner A., Kasálková N.S., Kolská Z., Ruml T., Švorčík V. Plasma activated perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Deg. Stab. 2016;130:277–287. doi: 10.1016/j.polymdegradstab.2016.06.017. DOI
Biopolymer Honeycomb Microstructures: A Review