Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly(ethylene terephthalate)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-05506S
Czech Science Foundation
PubMed
35269281
PubMed Central
PMC8912388
DOI
10.3390/nano12050792
PII: nano12050792
Knihovny.cz E-zdroje
- Klíčová slova
- laser processing, polyethyleneterephthalate, ripple structures, silver nanoparticles, surface morphology,
- Publikační typ
- časopisecké články MeSH
In the last two decades, the importance of nanomaterials in modern technologies has been unquestionable. Metal nanoparticles are frequently used in many areas of science and technology, delivering unprecedented improvements to properties of the conventional materials. This work introduces an effective tool for preparing a highly enriched poly (ethylene terephthalate) (PET) surface with silver nanoparticles, firmly immobilized in the same surface area on polymer. We showed that besides pristine polymer, this approach may be successfully applied also on laser pre-treated PET with laser-induced periodic surface structures. At the same time, its final nanostructure may be effectively controlled by laser fluence applied during the immobilization process.
Zobrazit více v PubMed
Naghdi S., Rhee K.Y., Hui D., Park S.J. A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications. Coatings. 2018;8:278. doi: 10.3390/coatings8080278. DOI
Fukuzumi S., Yamada Y. Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction. J. Mater. Chem. 2012;22:24284–24296. doi: 10.1039/c2jm32926c. DOI
Díez-Pascual A.M. Nanoparticle Reinforced Polymers. Polymers. 2019;11:625. doi: 10.3390/polym11040625. PubMed DOI PMC
Fu B., Sun J., Cheng Y., Ouyang H., Compagnini G., Yin P., Wei S., Li S., Li D., Scardaci V., et al. Recent Progress on Metal-Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics. Adv. Funct. Mater. 2021;31:2107363. doi: 10.1002/adfm.202107363. DOI
Naganthran A., Verasoundarapandian G., Khalid F.E., Masarudin M.J., Zulkharnain A., Nawawi N.M., Karim M., Che Abdullah C.A., Ahmad S.A. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials. 2022;15:427. doi: 10.3390/ma15020427. PubMed DOI PMC
Zare E.N., Jamaledin R., Naserzadeh P., Afjeh-Dana E., Ashtari B., Hosseinzadeh M., Vecchione R., Wu A., Tay F.R., Borzacchiello A., et al. Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS Appl. Mater. Interfaces. 2020;12:3279–3300. doi: 10.1021/acsami.9b19435. PubMed DOI
Prakash J., Pivin J.C., Swart H.C. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Adv. Colloid Interface Sci. 2015;226:187–202. doi: 10.1016/j.cis.2015.10.010. PubMed DOI
Barb R.A., Hrelescu C., Dong L., Heitz J., Siegel J., Slepicka P., Vosmanska V., Svorcik V., Magnus B., Marksteiner R., et al. Laser-induced periodic surface structures on polymers for formation of gold nanowires and activation of human cells. Appl. Phys. A. 2014;117:295–300. doi: 10.1007/s00339-013-8219-9. DOI
De Guzman M.R., Wen Y.-H., Du J., Yuan L., Wu C.-S., Hung W.-S., Guo J.-P., Yao Y.-L., Yuan S., Wang R.-Y., et al. Characterization of antibacterial nanocomposites of polyethylene terephthalate filled with nanosilver-doped carbon black. Polym. Polym. Compos. 2021;29:797–806. doi: 10.1177/0967391120935305. DOI
Boboc M., Curti F., Fleaca A.M., Jianu M.L., Rosu A.-M., Curutiu C., Lazar V., Chifiriuc M.C., Grumezescu A.M. Preparation and Antimicrobial Activity of Inorganic Nanoparticles: Promising Solutions to Fight Antibiotic Resistance. In: Ficai A., Grumezescu A.M., editors. Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 325–340.
Saravanan S., Nethala S., Pattnaik S., Tripathi A., Moorthi A., Selvamurugan N. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int. J. Biol. Macromol. 2011;49:188–193. doi: 10.1016/j.ijbiomac.2011.04.010. PubMed DOI
Paladini F., Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials. 2019;12:2540. doi: 10.3390/ma12162540. PubMed DOI PMC
Narayan N., Meiyazhagan A., Vajtai R. Metal Nanoparticles as Green Catalysts. Materials. 2019;12:3602. doi: 10.3390/ma12213602. PubMed DOI PMC
Zhou Y., Jin C., Li Y., Shen W. Dynamic behavior of metal nanoparticles for catalysis. Nano Today. 2018;20:101–120. doi: 10.1016/j.nantod.2018.04.005. DOI
Kim C., Lee H. Light-assisted surface reactions on metal nanoparticles. Catal. Sci. Technol. 2018;8:3718–3727. doi: 10.1039/C8CY00674A. DOI
Wang Y., Arandiyan H., Scott J., Bagheri A., Dai H.X., Amal R. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review. J. Mater. Chem. A. 2017;5:8825–8846. doi: 10.1039/C6TA10896B. DOI
Edison T.J.I., Sethuraman M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012;47:1351–1357. doi: 10.1016/j.procbio.2012.04.025. DOI
Iqbal S., Zahoor C., Musaddiq S., Hussain M., Begum R., Irfan A., Azam M., Farooqi Z.H. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol. Environ. Saf. 2020;202:110924. doi: 10.1016/j.ecoenv.2020.110924. PubMed DOI
Begum R., Farooqi Z.H., Ahmed E., Naseem K., Ashraf S., Sharif A., Rehan R. Catalytic reduction of 4-nitrophenol using silver nanoparticles-engineered poly(N-isopropylacrylamide-co-acrylamide) hybrid microgels. Appl. Organomet. Chem. 2017;31:e3563. doi: 10.1002/aoc.3563. DOI
Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI
Siegel J., Heitz J., Svorcik V. Self-organized gold nanostructures on laser patterned PET. Surf. Coat. Technol. 2011;206:517–521. doi: 10.1016/j.surfcoat.2011.07.080. DOI
Cui J., Nogales A., Ezquerra T.A., Rebollar E. Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 2017;394:125–131. doi: 10.1016/j.apsusc.2016.10.045. DOI
Doren A., Genet M.J., Rouxhet P.G. Analysis of Poly(Ethylene Terephthalate) (PET) by XPS. Surf. Sci. Spectra. 1994;3:337–341. doi: 10.1116/1.1247762. DOI
Abbaszadegan A., Ghahramani Y., Gholami A., Hemmateenejad B., Dorostkar S., Nabavizadeh M., Sharghi H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015;2015:720654. doi: 10.1155/2015/720654. DOI
Amendola V., Bakr O.M., Stellacci F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics. 2010;5:85–97. doi: 10.1007/s11468-009-9120-4. DOI
Chawla M., Rubi, Kumar R., Sharma A., Aggarwal S., Kumar P., Kanjilal D. Tailoring Structural Properties of Polyethylene Terephthalate (PET) by 200 keV Ar+ Implantation; Proceedings of the 3rd Conference on Condensed Matter and Materials Physics (CMMP 2012); Vallabh Vidyanagar, India. 3–5 March 2013; p. 221.
Krajcar R., Siegel J., Lyutakov O., Slepicka P., Svorcik V. Optical response of anisotropic silver nanostructures on polarized light. Mater. Lett. 2014;137:72–74. doi: 10.1016/j.matlet.2014.08.113. DOI
Li J., Li K., Schuster C., Su R., Wang X., Borges B.-H.V., Krauss T.F., Martins E.R. Spatial resolution effect of light coupling structures. Sci. Rep. 2015;5:1–8. doi: 10.1038/srep18500. PubMed DOI PMC
Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI
The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid
Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation