Decoration of Ultramicrotome-Cut Polymers with Silver Nanoparticles: Effect of Post-Deposition Laser Treatment

. 2022 Dec 14 ; 15 (24) : . [epub] 20221214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36556756

Grantová podpora
22-17346S Czech Science Foundation

Today, ultramicrotome cutting is a practical tool, which is frequently applied in the preparation of thin polymeric films. One of the advantages of such a technique is the decrease in surface roughness, which enables an effective recording of further morphological changes of polymeric surfaces during their processing. In view of this, we report on ultramicrotome-cut polymers (PET, PEEK) modified by a KrF excimer laser with simultaneous decoration by AgNPs. The samples were immersed into AgNP colloid, in which they were exposed to polarized laser light. As a result, both polymers changed their surface morphology while simultaneously being decorated with AgNPs. KrF laser irradiation of the samples resulted in the formation of ripple-like structures on the surface of PET and worm-like ones in the case of PEEK. Both polymers were homogeneously covered by AgNPs. The selected area of the samples was then irradiated by a violet semiconductor laser from the confocal laser scanning microscope with direct control of the irradiated area. Various techniques, such as AFM, FEGSEM, and CLSM were used to visualize the irradiated area. After irradiation, the reverse pyramid was formed for both types of polymers. PET samples exhibited thicker transparent reverse pyramids, whereas PEEK samples showed thinner brownish ones. We believe that his technique can be effectively used for direct polymer writing or the preparation of stimuli-responsive nanoporous membranes.

Zobrazit více v PubMed

Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI

Pryjmaková J., Kaimlová M., Vokatá B., Hubáček T., Slepička P., Švorčík V., Siegel J. Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials. Nanomaterials. 2021;11:2285. doi: 10.3390/nano11092285. PubMed DOI PMC

Pryjmaková J., Hryhoruk M., Veselý M., Slepička P., Švorčík V., Siegel J. Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation. Nanomaterials. 2022;12:1220. doi: 10.3390/nano12071220. PubMed DOI PMC

Polívková M., Hubáček T., Staszek M., Švorčík V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC

Wang J., Liu J., Li J., Zhu J. Characterization of microstructure, chemical, and physical properties of delignified and densified poplar wood. Materials. 2021;14:5709. doi: 10.3390/ma14195709. PubMed DOI PMC

Do Nascimento Brandão D.L., Veiga A.S.S., Quaresma C.C., Busman D.V., de Almeida Lins A.L.F., Silveira F.T., Campos M.B., Percário S., Dolabela M.F. Botanical survey and leishmanicidal activity of grown-love. Res. Soc. Dev. 2020;9:e3929119983. doi: 10.33448/rsd-v9i11.9983. DOI

Baden N. Novel method for high-spatial-resolution chemical analysis of buried polymer-metal interface: Atomic force microscopy-infrared (AFM-IR) spectroscopy with low-angle microtomy. Appl. Spectrosc. 2021;75:901–910. doi: 10.1177/00037028211007187. PubMed DOI

Al-Aaraji N.A.-H., Hashim A., Hadi A., Abduljalil H.M. Effect of silicon carbide nanoparticles addition on structural and dielectric characteristics of PVA/CuO nanostructures for electronics devices. Silicon. 2022;14:4699–4705. doi: 10.1007/s12633-021-01265-3. DOI

Sakhno O., Yezhov P., Hryn V., Rudenko V., Smirnova T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers. 2020;12:480. doi: 10.3390/polym12020480. PubMed DOI PMC

Iqbal S., Zahoor C., Musaddiq S., Hussain M., Begum R., Irfan A., Azam M., Farooqi Z.H. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol. Environ. Saf. 2020;202:110924. doi: 10.1016/j.ecoenv.2020.110924. PubMed DOI

Alshabanah L.A., Omran N., Elwakil B.H., Hamed M.T., Abdallah S.M., Al-Mutabagani L.A., Wang D., Liu Q., Shehata N., Hassanin A.H. Elastic nanofibrous membranes for medical and personal protection applications: Manufacturing, anti-COVID-19, and anti-colistin resistant bacteria evaluation. Polymers. 2021;13:3987. doi: 10.3390/polym13223987. PubMed DOI PMC

Diniz F.R., Maia R.C.A., Rannier Andrade L., Andrade L.N., Vinicius Chaud M., da Silva C.F., Corrêa C.B., de Albuquerque Junior R.L.C., Pereira da Costa L., Shin S.R. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials. 2020;10:390. doi: 10.3390/nano10020390. PubMed DOI PMC

Iida M., Goto T., Hatakeyama K., Ito T., Shimizu Y., Hakuta Y., Terashima K. Surface modification and Ag nanoparticles support of graphene nanoplates via plasma in liquid. Jpn. J. Appl. Phys. 2020;59:SHHE08. doi: 10.35848/1347-4065/ab7b16. DOI

Hupfeld T., Wegner A., Blanke M., Doñate-Buendía C., Sharov V., Nieskens S., Piechotta M., Giese M., Barcikowski S., Gökce B. Plasmonic seasoning: Giving color to desktop laser 3D printed polymers by highly dispersed nanoparticles. Adv. Opt. Mater. 2020;8:2000473. doi: 10.1002/adom.202000473. DOI

Fahmy A., Agudo Jácome L., Schönhals A. Effect of silver nanoparticles on the dielectric properties and the homogeneity of plasma poly (acrylic acid) thin films. J. Phys. Chem. C. 2020;124:22817–22826. doi: 10.1021/acs.jpcc.0c06712. DOI

Dienerowitz M., Mazilu M., Dholakia K. Optical manipulation of nanoparticles: A review. J. Nanophotonics. 2008;2:021875. doi: 10.1117/1.2992045. DOI

Gao D., Shi R., Huang Y., Gao L. Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles. Phys. Rev. A. 2017;96:043826. doi: 10.1103/PhysRevA.96.043826. DOI

Lehmuskero A., Johansson P., Rubinsztein-Dunlop H., Tong L., Kall M. Laser trapping of colloidal metal nanoparticles. ACS Nano. 2015;9:3453–3469. doi: 10.1021/acsnano.5b00286. PubMed DOI

Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P. Optomechanical processing of silver colloids: New generation of nanoparticle–polymer composites with bactericidal effect. Int. J. Mol. Sci. 2020;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC

Li H., Zhang H., Luo W., Yuan R., Zhao Y., Huang J.-A., Yang X. Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of MicroRNA. Anal. Chim. Acta. 2022;1229:340380. doi: 10.1016/j.aca.2022.340380. PubMed DOI

Gupta V., Sarkar S., Aftenieva O., Tsuda T., Kumar L., Schletz D., Schultz J., Kiriy A., Fery A., Vogel N. Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis. Adv. Funct. Mater. 2021;31:2105054. doi: 10.1002/adfm.202105054. DOI

Kim J.Y., Oh Y.T., Lee S.E., Park J.H., Park S., Ko Y.C., Hwang J.P., Seon S.W., Yu T.S., Kim S.H. Collapse-Induced Multimer Formation of Self-Assembled Nanoparticles for Surface Enhanced Raman Scattering. Coatings. 2021;11:76. doi: 10.3390/coatings11010076. DOI

Angevine C.E., Robertson J.W., Dass A., Reiner J.E. Laser-based temperature control to study the roles of entropy and enthalpy in polymer-nanopore interactions. Sci. Adv. 2021;7:eabf5462. doi: 10.1126/sciadv.abf5462. PubMed DOI PMC

Huang J.H., Cheng X.Q., Zhang Y., Wang K., Liang H., Wang P., Ma J., Shao L. Polyelectrolyte grafted MOFs enable conjugated membranes for molecular separations in dual solvent systems. Cell Rep. Phys. Sci. 2020;1:100034. doi: 10.1016/j.xcrp.2020.100034. DOI

Laucirica G., Albesa A.G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy. 2020;71:104612. doi: 10.1016/j.nanoen.2020.104612. DOI

Thomas A.M., Peter J., Mohan A., Nagappan S., Selvaraj M., Ha C.-S. Dual stimuli-responsive silver nanoparticles decorated SBA–15 hybrid catalyst for selective oxidation of alcohols under ‘mild’conditions. Microporous Mesoporous Mater. 2021;311:110697. doi: 10.1016/j.micromeso.2020.110697. DOI

Karuppaiah A., Babu D., Selvaraj D., Natrajan T., Rajan R., Gautam M., Ranganathan H., Siram K., Nesamony J., Sankar V. Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats. Eur. J. Pharm. Sci. 2021;165:105938. doi: 10.1016/j.ejps.2021.105938. PubMed DOI

Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI

Goodfellow Ltd. Cambridge [(accessed on 5 September 2022)]. Available online: https://www.goodfellow.com/de/en-us/displayitemdetails/p/es30-fm-000335/polyethylene-terephthalate-film.

Goodfellow Ltd. Cambridge [(accessed on 5 September 2022)]. Available online: https://www.goodfellow.com/de/en-us/displayitemdetails/p/ek30-fm-000151/polyetheretherketone-film.

Kawai F. Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling. ChemSusChem. 2021;14:4115–4122. doi: 10.1002/cssc.202100740. PubMed DOI

Niu Y., Zheng S., Song P., Zhang X., Wang C. Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates. Compos. Part B Eng. 2021;212:108715. doi: 10.1016/j.compositesb.2021.108715. DOI

Abbott C.S., Sperry M., Crane N.B. Relationships between porosity and mechanical properties of polyamide 12 parts produced using the laser sintering and multi-jet fusion powder bed fusion processes. J. Manuf. Process. 2021;70:55–66. doi: 10.1016/j.jmapro.2021.08.012. DOI

Heitz J., Reisinger B., Fahrner M., Romanin C., Siegel J., Svorcik V. Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces; Proceedings of the 2012 14th International Conference on Transparent Optical Networks (ICTON); Coventry, UK. 2–5 July 2012; pp. 1–4.

Fazio E., Gökce B., De Giacomo A., Meneghetti M., Compagnini G., Tommasini M., Waag F., Lucotti A., Zanchi C.G., Ossi P.M. Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials. 2020;10:2317. doi: 10.3390/nano10112317. PubMed DOI PMC

Ruiz S., Wang F., Liu L., Lu Y., Duan B., Korshoj L.E., Kielian T., Cui B. Antibacterial properties of silver nanoparticles synthesized via nanosecond pulsed laser ablation in water. J. Laser Appl. 2022;34:012031. doi: 10.2351/7.0000603. DOI

Siegel J., Savenkova T., Pryjmaková J., Slepička P., Šlouf M., Švorčík V. Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids. Materials. 2021;14:3263. doi: 10.3390/ma14123263. PubMed DOI PMC

Siegel J., Grossberger D., Pryjmaková J., Šlouf M., Švorčík V. Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly (ethylene terephthalate) Nanomaterials. 2022;12:792. doi: 10.3390/nano12050792. PubMed DOI PMC

Zhang J., Feng J., Jia L., Xu R., Zhao J., Zheng Z., Zhou T. Top–Down Direct Preparation of Orange–Yellow Dye Similar to Psittacofulvins from Commercial Polymer by Laser Writing. ACS Appl. Mater. Interfaces. 2020;12:58339–58348. doi: 10.1021/acsami.0c15471. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...