Decoration of Ultramicrotome-Cut Polymers with Silver Nanoparticles: Effect of Post-Deposition Laser Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-17346S
Czech Science Foundation
PubMed
36556756
PubMed Central
PMC9785220
DOI
10.3390/ma15248950
PII: ma15248950
Knihovny.cz E-zdroje
- Klíčová slova
- optomechanical manipulation, plasmon resonance, polyether etherketone, polyethylene terephthalate, silver nanoparticles, surface morphology,
- Publikační typ
- časopisecké články MeSH
Today, ultramicrotome cutting is a practical tool, which is frequently applied in the preparation of thin polymeric films. One of the advantages of such a technique is the decrease in surface roughness, which enables an effective recording of further morphological changes of polymeric surfaces during their processing. In view of this, we report on ultramicrotome-cut polymers (PET, PEEK) modified by a KrF excimer laser with simultaneous decoration by AgNPs. The samples were immersed into AgNP colloid, in which they were exposed to polarized laser light. As a result, both polymers changed their surface morphology while simultaneously being decorated with AgNPs. KrF laser irradiation of the samples resulted in the formation of ripple-like structures on the surface of PET and worm-like ones in the case of PEEK. Both polymers were homogeneously covered by AgNPs. The selected area of the samples was then irradiated by a violet semiconductor laser from the confocal laser scanning microscope with direct control of the irradiated area. Various techniques, such as AFM, FEGSEM, and CLSM were used to visualize the irradiated area. After irradiation, the reverse pyramid was formed for both types of polymers. PET samples exhibited thicker transparent reverse pyramids, whereas PEEK samples showed thinner brownish ones. We believe that his technique can be effectively used for direct polymer writing or the preparation of stimuli-responsive nanoporous membranes.
Zobrazit více v PubMed
Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Pryjmaková J., Kaimlová M., Vokatá B., Hubáček T., Slepička P., Švorčík V., Siegel J. Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials. Nanomaterials. 2021;11:2285. doi: 10.3390/nano11092285. PubMed DOI PMC
Pryjmaková J., Hryhoruk M., Veselý M., Slepička P., Švorčík V., Siegel J. Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation. Nanomaterials. 2022;12:1220. doi: 10.3390/nano12071220. PubMed DOI PMC
Polívková M., Hubáček T., Staszek M., Švorčík V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC
Wang J., Liu J., Li J., Zhu J. Characterization of microstructure, chemical, and physical properties of delignified and densified poplar wood. Materials. 2021;14:5709. doi: 10.3390/ma14195709. PubMed DOI PMC
Do Nascimento Brandão D.L., Veiga A.S.S., Quaresma C.C., Busman D.V., de Almeida Lins A.L.F., Silveira F.T., Campos M.B., Percário S., Dolabela M.F. Botanical survey and leishmanicidal activity of grown-love. Res. Soc. Dev. 2020;9:e3929119983. doi: 10.33448/rsd-v9i11.9983. DOI
Baden N. Novel method for high-spatial-resolution chemical analysis of buried polymer-metal interface: Atomic force microscopy-infrared (AFM-IR) spectroscopy with low-angle microtomy. Appl. Spectrosc. 2021;75:901–910. doi: 10.1177/00037028211007187. PubMed DOI
Al-Aaraji N.A.-H., Hashim A., Hadi A., Abduljalil H.M. Effect of silicon carbide nanoparticles addition on structural and dielectric characteristics of PVA/CuO nanostructures for electronics devices. Silicon. 2022;14:4699–4705. doi: 10.1007/s12633-021-01265-3. DOI
Sakhno O., Yezhov P., Hryn V., Rudenko V., Smirnova T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers. 2020;12:480. doi: 10.3390/polym12020480. PubMed DOI PMC
Iqbal S., Zahoor C., Musaddiq S., Hussain M., Begum R., Irfan A., Azam M., Farooqi Z.H. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol. Environ. Saf. 2020;202:110924. doi: 10.1016/j.ecoenv.2020.110924. PubMed DOI
Alshabanah L.A., Omran N., Elwakil B.H., Hamed M.T., Abdallah S.M., Al-Mutabagani L.A., Wang D., Liu Q., Shehata N., Hassanin A.H. Elastic nanofibrous membranes for medical and personal protection applications: Manufacturing, anti-COVID-19, and anti-colistin resistant bacteria evaluation. Polymers. 2021;13:3987. doi: 10.3390/polym13223987. PubMed DOI PMC
Diniz F.R., Maia R.C.A., Rannier Andrade L., Andrade L.N., Vinicius Chaud M., da Silva C.F., Corrêa C.B., de Albuquerque Junior R.L.C., Pereira da Costa L., Shin S.R. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials. 2020;10:390. doi: 10.3390/nano10020390. PubMed DOI PMC
Iida M., Goto T., Hatakeyama K., Ito T., Shimizu Y., Hakuta Y., Terashima K. Surface modification and Ag nanoparticles support of graphene nanoplates via plasma in liquid. Jpn. J. Appl. Phys. 2020;59:SHHE08. doi: 10.35848/1347-4065/ab7b16. DOI
Hupfeld T., Wegner A., Blanke M., Doñate-Buendía C., Sharov V., Nieskens S., Piechotta M., Giese M., Barcikowski S., Gökce B. Plasmonic seasoning: Giving color to desktop laser 3D printed polymers by highly dispersed nanoparticles. Adv. Opt. Mater. 2020;8:2000473. doi: 10.1002/adom.202000473. DOI
Fahmy A., Agudo Jácome L., Schönhals A. Effect of silver nanoparticles on the dielectric properties and the homogeneity of plasma poly (acrylic acid) thin films. J. Phys. Chem. C. 2020;124:22817–22826. doi: 10.1021/acs.jpcc.0c06712. DOI
Dienerowitz M., Mazilu M., Dholakia K. Optical manipulation of nanoparticles: A review. J. Nanophotonics. 2008;2:021875. doi: 10.1117/1.2992045. DOI
Gao D., Shi R., Huang Y., Gao L. Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles. Phys. Rev. A. 2017;96:043826. doi: 10.1103/PhysRevA.96.043826. DOI
Lehmuskero A., Johansson P., Rubinsztein-Dunlop H., Tong L., Kall M. Laser trapping of colloidal metal nanoparticles. ACS Nano. 2015;9:3453–3469. doi: 10.1021/acsnano.5b00286. PubMed DOI
Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P. Optomechanical processing of silver colloids: New generation of nanoparticle–polymer composites with bactericidal effect. Int. J. Mol. Sci. 2020;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC
Li H., Zhang H., Luo W., Yuan R., Zhao Y., Huang J.-A., Yang X. Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of MicroRNA. Anal. Chim. Acta. 2022;1229:340380. doi: 10.1016/j.aca.2022.340380. PubMed DOI
Gupta V., Sarkar S., Aftenieva O., Tsuda T., Kumar L., Schletz D., Schultz J., Kiriy A., Fery A., Vogel N. Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis. Adv. Funct. Mater. 2021;31:2105054. doi: 10.1002/adfm.202105054. DOI
Kim J.Y., Oh Y.T., Lee S.E., Park J.H., Park S., Ko Y.C., Hwang J.P., Seon S.W., Yu T.S., Kim S.H. Collapse-Induced Multimer Formation of Self-Assembled Nanoparticles for Surface Enhanced Raman Scattering. Coatings. 2021;11:76. doi: 10.3390/coatings11010076. DOI
Angevine C.E., Robertson J.W., Dass A., Reiner J.E. Laser-based temperature control to study the roles of entropy and enthalpy in polymer-nanopore interactions. Sci. Adv. 2021;7:eabf5462. doi: 10.1126/sciadv.abf5462. PubMed DOI PMC
Huang J.H., Cheng X.Q., Zhang Y., Wang K., Liang H., Wang P., Ma J., Shao L. Polyelectrolyte grafted MOFs enable conjugated membranes for molecular separations in dual solvent systems. Cell Rep. Phys. Sci. 2020;1:100034. doi: 10.1016/j.xcrp.2020.100034. DOI
Laucirica G., Albesa A.G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy. 2020;71:104612. doi: 10.1016/j.nanoen.2020.104612. DOI
Thomas A.M., Peter J., Mohan A., Nagappan S., Selvaraj M., Ha C.-S. Dual stimuli-responsive silver nanoparticles decorated SBA–15 hybrid catalyst for selective oxidation of alcohols under ‘mild’conditions. Microporous Mesoporous Mater. 2021;311:110697. doi: 10.1016/j.micromeso.2020.110697. DOI
Karuppaiah A., Babu D., Selvaraj D., Natrajan T., Rajan R., Gautam M., Ranganathan H., Siram K., Nesamony J., Sankar V. Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats. Eur. J. Pharm. Sci. 2021;165:105938. doi: 10.1016/j.ejps.2021.105938. PubMed DOI
Siegel J., Lyutakov O., Polívková M., Staszek M., Hubáček T., Švorčík V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI
Goodfellow Ltd. Cambridge [(accessed on 5 September 2022)]. Available online: https://www.goodfellow.com/de/en-us/displayitemdetails/p/es30-fm-000335/polyethylene-terephthalate-film.
Goodfellow Ltd. Cambridge [(accessed on 5 September 2022)]. Available online: https://www.goodfellow.com/de/en-us/displayitemdetails/p/ek30-fm-000151/polyetheretherketone-film.
Kawai F. Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling. ChemSusChem. 2021;14:4115–4122. doi: 10.1002/cssc.202100740. PubMed DOI
Niu Y., Zheng S., Song P., Zhang X., Wang C. Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates. Compos. Part B Eng. 2021;212:108715. doi: 10.1016/j.compositesb.2021.108715. DOI
Abbott C.S., Sperry M., Crane N.B. Relationships between porosity and mechanical properties of polyamide 12 parts produced using the laser sintering and multi-jet fusion powder bed fusion processes. J. Manuf. Process. 2021;70:55–66. doi: 10.1016/j.jmapro.2021.08.012. DOI
Heitz J., Reisinger B., Fahrner M., Romanin C., Siegel J., Svorcik V. Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces; Proceedings of the 2012 14th International Conference on Transparent Optical Networks (ICTON); Coventry, UK. 2–5 July 2012; pp. 1–4.
Fazio E., Gökce B., De Giacomo A., Meneghetti M., Compagnini G., Tommasini M., Waag F., Lucotti A., Zanchi C.G., Ossi P.M. Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials. 2020;10:2317. doi: 10.3390/nano10112317. PubMed DOI PMC
Ruiz S., Wang F., Liu L., Lu Y., Duan B., Korshoj L.E., Kielian T., Cui B. Antibacterial properties of silver nanoparticles synthesized via nanosecond pulsed laser ablation in water. J. Laser Appl. 2022;34:012031. doi: 10.2351/7.0000603. DOI
Siegel J., Savenkova T., Pryjmaková J., Slepička P., Šlouf M., Švorčík V. Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids. Materials. 2021;14:3263. doi: 10.3390/ma14123263. PubMed DOI PMC
Siegel J., Grossberger D., Pryjmaková J., Šlouf M., Švorčík V. Laser-Promoted Immobilization of Ag Nanoparticles: Effect of Surface Morphology of Poly (ethylene terephthalate) Nanomaterials. 2022;12:792. doi: 10.3390/nano12050792. PubMed DOI PMC
Zhang J., Feng J., Jia L., Xu R., Zhao J., Zheng Z., Zhou T. Top–Down Direct Preparation of Orange–Yellow Dye Similar to Psittacofulvins from Commercial Polymer by Laser Writing. ACS Appl. Mater. Interfaces. 2020;12:58339–58348. doi: 10.1021/acsami.0c15471. PubMed DOI