Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling

. 2019 Jun 20 ; 11 (6) : . [epub] 20190620

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31226835

Myeloid phagocytes have evolved to rapidly recognize invading pathogens and clear them through opsonophagocytic killing. The adenylate cyclase toxin (CyaA) of Bordetella pertussis and the edema toxin (ET) of Bacillus anthracis are both calmodulin-activated toxins with adenylyl cyclase activity that invade host cells and massively increase the cellular concentrations of a key second messenger molecule, 3',5'-cyclic adenosine monophosphate (cAMP). However, the two toxins differ in the kinetics and mode of cell entry and generate different cAMP concentration gradients within the cell. While CyaA rapidly penetrates cells directly across their plasma membrane, the cellular entry of ET depends on receptor-mediated endocytosis and translocation of the enzymatic subunit across the endosomal membrane. We show that CyaA-generated membrane-proximal cAMP gradient strongly inhibits the activation and phosphorylation of Syk, Vav, and Pyk2, thus inhibiting opsonophagocytosis. By contrast, at similar overall cellular cAMP levels, the ET-generated perinuclear cAMP gradient poorly inhibits the activation and phosphorylation of these signaling proteins. Hence, differences in spatiotemporal distribution of cAMP produced by the two adenylyl cyclase toxins differentially affect the opsonophagocytic signaling in myeloid phagocytes.

Zobrazit více v PubMed

Rosales C., Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed. Res. Int. 2017;2017:9042851. doi: 10.1155/2017/9042851. PubMed DOI PMC

Gordon S. Phagocytosis: An Immunobiologic Process. Immunity. 2016;44:463–475. doi: 10.1016/j.immuni.2016.02.026. PubMed DOI

Allen L.A., Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 1996;184:627–637. doi: 10.1084/jem.184.2.627. PubMed DOI PMC

Caron E., Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998;282:1717–1721. doi: 10.1126/science.282.5394.1717. PubMed DOI

Kaplan G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immunol. 1977;6:797–807. doi: 10.1111/j.1365-3083.1977.tb02153.x. PubMed DOI

Schafer G., Jacobs M., Wilkinson R.J., Brown G.D. Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes. J. Innate Immun. 2009;1:231–243. doi: 10.1159/000173703. PubMed DOI PMC

Ofek I., Goldhar J., Keisari Y., Sharon N. Nonopsonic phagocytosis of microorganisms. Ann. Rev. Microbiol. 1995;49:239–276. doi: 10.1146/annurev.mi.49.100195.001323. PubMed DOI

Shi Y., Tohyama Y., Kadono T., He J., Miah S.M., Hazama R., Tanaka C., Tohyama K., Yamamura H. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood. 2006;107:4554–4562. doi: 10.1182/blood-2005-09-3616. PubMed DOI

Crowley M.T., Costello P.S., Fitzer-Attas C.J., Turner M., Meng F., Lowell C., Tybulewicz V.L., DeFranco A.L. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J. Exp. Med. 1997;186:1027–1039. doi: 10.1084/jem.186.7.1027. PubMed DOI PMC

Paone C., Rodrigues N., Ittner E., Santos C., Buntru A., Hauck C.R. The Tyrosine Kinase Pyk2 Contributes to Complement-Mediated Phagocytosis in Murine Macrophages. J. Innate Immun. 2016;8:437–451. doi: 10.1159/000442944. PubMed DOI PMC

Kedzierska K., Vardaxis N.J., Jaworowski A., Crowe S.M. FcgammaR-mediated phagocytosis by human macrophages involves Hck, Syk, and Pyk2 and is augmented by GM-CSF. J. Leukoc. Biol. 2001;70:322–328. PubMed

Gakidis M.A., Cullere X., Olson T., Wilsbacher J.L., Zhang B., Moores S.L., Ley K., Swat W., Mayadas T., Brugge J.S. Vav GEFs are required for beta2 integrin-dependent functions of neutrophils. J. Cell Biol. 2004;166:273–282. doi: 10.1083/jcb.200404166. PubMed DOI PMC

Patel J.C., Hall A., Caron E. Vav regulates activation of Rac but not Cdc42 during FcgammaR-mediated phagocytosis. Mol. Biol. Cell. 2002;13:1215–1226. doi: 10.1091/mbc.02-01-0002. PubMed DOI PMC

Hall A.B., Gakidis M.A., Glogauer M., Wilsbacher J.L., Gao S., Swat W., Brugge J.S. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis. Immunity. 2006;24:305–316. doi: 10.1016/j.immuni.2006.02.005. PubMed DOI

Leppla S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA. 1982;79:3162–3166. doi: 10.1073/pnas.79.10.3162. PubMed DOI PMC

Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI

Ahuja N., Kumar P., Bhatnagar R. The adenylate cyclase toxins. Crit. Rev. Microbiol. 2004;30:187–196. doi: 10.1080/10408410490468795. PubMed DOI

Hewlett E., Wolff J. Soluble adenylate cyclase from the culture medium of Bordetella pertussis: Purification and characterization. J. Bacteriol. 1976;127:890–898. PubMed PMC

Aronoff D.M., Canetti C., Serezani C.H., Luo M., Peters-Golden M. Cutting edge: Macrophage inhibition by cyclic AMP (cAMP): Differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J. Immunol. 2005;174:595–599. doi: 10.4049/jimmunol.174.2.595. PubMed DOI

Yeager L.A., Chopra A.K., Peterson J.W. Bacillus anthracis edema toxin suppresses human macrophage phagocytosis and cytoskeletal remodeling via the protein kinase A and exchange protein activated by cyclic AMP pathways. Infect. Immun. 2009;77:2530–2543. doi: 10.1128/IAI.00905-08. PubMed DOI PMC

Liu S., Miller-Randolph S., Crown D., Moayeri M., Sastalla I., Okugawa S., Leppla S.H. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe. 2010;8:455–462. doi: 10.1016/j.chom.2010.10.004. PubMed DOI PMC

O’Brien J., Friedlander A., Dreier T., Ezzell J., Leppla S. Effects of anthrax toxin components on human neutrophils. Infect. Immun. 1985;47:306–310. PubMed PMC

Tournier J.N., Quesnel-Hellmann A., Mathieu J., Montecucco C., Tang W.J., Mock M., Vidal D.R., Goossens P.L. Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J. Immunol. 2005;174:4934–4941. doi: 10.4049/jimmunol.174.8.4934. PubMed DOI

Boyd A.P., Ross P.J., Conroy H., Mahon N., Lavelle E.C., Mills K.H. Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: Distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J. Immunol. 2005;175:730–738. doi: 10.4049/jimmunol.175.2.730. PubMed DOI

Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a011148. PubMed DOI PMC

Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC

Bumba L., Masin J., Fiser R., Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901. doi: 10.1371/journal.ppat.1000901. PubMed DOI PMC

Rogel A., Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J. Biol. Chem. 1992;267:22599–22605. PubMed

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC

Fiser R., Masin J., Bumba L., Pospisilova E., Fayolle C., Basler M., Sadilkova L., Adkins I., Kamanova J., Cerny J., et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8:e1002580. doi: 10.1371/journal.ppat.1002580. PubMed DOI PMC

Friebe S., van der Goot F.G., Burgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016;8:69. doi: 10.3390/toxins8030069. PubMed DOI PMC

Abrami L., Liu S., Cosson P., Leppla S.H., van der Goot F.G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 2003;160:321–328. doi: 10.1083/jcb.200211018. PubMed DOI PMC

Dal Molin F., Tonello F., Ladant D., Zornetta I., Zamparo I., Di Benedetto G., Zaccolo M., Montecucco C. Cell entry and cAMP imaging of anthrax edema toxin. EMBO J. 2006;25:5405–5413. doi: 10.1038/sj.emboj.7601408. PubMed DOI PMC

Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. J. Immunol. 2015;194:4901–4913. doi: 10.4049/jimmunol.1402941. PubMed DOI

Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC

Deshpande A., Hammon R.J., Sanders C.K., Graves S.W. Quantitative analysis of the effect of cell type and cellular differentiation on protective antigen binding to human target cells. FEBS Lett. 2006;580:4172–4175. doi: 10.1016/j.febslet.2006.06.070. PubMed DOI

Fujikura D., Toyomane K., Kamiya K., Mutoh M., Mifune E., Ohnuma M., Higashi H. ANTXR-1 and 2 independent modulation of a cytotoxicity mediated by anthrax toxin in human cells. J. Vet. Med. Sci. 2016;78:1311–1317. doi: 10.1292/jvms.15-0727. PubMed DOI PMC

Puhar A., Dal Molin F., Horvath S., Ladant D., Montecucco C. Anthrax edema toxin modulates PKA-and CREB-dependent signaling in two phases. PLoS ONE. 2008;3:e3564. doi: 10.1371/annotation/b72b80a6-ee81-49e6-a086-0292f6255d4f. PubMed DOI PMC

Raymond B., Leduc D., Ravaux L., Le Goffic R., Candela T., Raymondjean M., Goossens P.L., Touqui L. Edema toxin impairs anthracidal phospholipase A2 expression by alveolar macrophages. PLoS Pathog. 2007;3:e187. doi: 10.1371/journal.ppat.0030187. PubMed DOI PMC

Trinidad A.G., de la Puerta M.L., Fernandez N., Bayon Y., Crespo M.S., Alonso A. Coupling of C3bi to IgG inhibits the tyrosine phosphorylation signaling cascade downstream Syk and reduces cytokine induction in monocytes. J. Leukoc. Biol. 2006;79:1073–1082. doi: 10.1189/jlb.1205701. PubMed DOI

Chung I.C., OuYang C.N., Yuan S.N., Li H.P., Chen J.T., Shieh H.R., Chen Y.J., Ojcius D.M., Chu C.L., Yu J.S., et al. Pyk2 activates the NLRP3 inflammasome by directly phosphorylating ASC and contributes to inflammasome-dependent peritonitis. Sci. Rep. 2016;6:36214. doi: 10.1038/srep36214. PubMed DOI PMC

Yan S.R., Novak M.J. Beta2 integrin-dependent phosphorylation of protein-tyrosine kinase Pyk2 stimulated by tumor necrosis factor alpha and fMLP in human neutrophils adherent to fibrinogen. FEBS Lett. 1999;451:33–38. doi: 10.1016/S0014-5793(99)00539-6. PubMed DOI

Deckert M., Tartare-Deckert S., Couture C., Mustelin T., Altman A. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity. 1996;5:591–604. doi: 10.1016/S1074-7613(00)80273-3. PubMed DOI

Shen Y., Zhukovskaya N.L., Zimmer M.I., Soelaiman S., Bergson P., Wang C.R., Gibbs C.S., Tang W.J. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc. Natl. Acad. Sci. USA. 2004;101:3242–3247. doi: 10.1073/pnas.0306552101. PubMed DOI PMC

Kalamidas S.A., Kuehnel M.P., Peyron P., Rybin V., Rauch S., Kotoulas O.B., Houslay M., Hemmings B.A., Gutierrez M.G., Anes E., et al. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: Consequences for mycobacteria. J. Cell Sci. 2006;119:3686–3694. doi: 10.1242/jcs.03091. PubMed DOI

Pryzwansky K.B., Kidao S., Merricks E.P. Compartmentalization of PDE-4 and cAMP-dependent protein kinase in neutrophils and macrophages during phagocytosis. Cell Biochem. Biophys. 1998;28:251–275. doi: 10.1007/BF02737813. PubMed DOI

Pryzwansky K.B., Steiner A.L., Spitznagel J.K., Kapoor C.L. Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes. Science. 1981;211:407–410. doi: 10.1126/science.6261328. PubMed DOI

Aronoff D.M., Canetti C., Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J. Immunol. 2004;173:559–565. doi: 10.4049/jimmunol.173.1.559. PubMed DOI

Arumugham V.B., Ulivieri C., Onnis A., Finetti F., Tonello F., Ladant D., Baldari C.T. Compartmentalized Cyclic AMP Production by the Bordetella pertussis and Bacillus anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Front. Immunol. 2018;9:919. doi: 10.3389/fimmu.2018.00919. PubMed DOI PMC

Zaccolo M., Di Benedetto G., Lissandron V., Mancuso L., Terrin A., Zamparo I. Restricted diffusion of a freely diffusible second messenger: Mechanisms underlying compartmentalized cAMP signalling. Biochem. Soc. Trans. 2006;34:495–497. doi: 10.1042/BST0340495. PubMed DOI

Davare M.A., Avdonin V., Hall D.D., Peden E.M., Burette A., Weinberg R.J., Horne M.C., Hoshi T., Hell J.W. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science. 2001;293:98–101. doi: 10.1126/science.293.5527.98. PubMed DOI

Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI

Lomas O., Zaccolo M. Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides. Physiology (Bethesda) 2014;29:141–149. doi: 10.1152/physiol.00040.2013. PubMed DOI PMC

Di Benedetto G., Zoccarato A., Lissandron V., Terrin A., Li X., Houslay M.D., Baillie G.S., Zaccolo M. Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ. Res. 2008;103:836–844. doi: 10.1161/CIRCRESAHA.108.174813. PubMed DOI

Brock T.G., Serezani C.H., Carstens J.K., Peters-Golden M., Aronoff D.M. Effects of prostaglandin E2 on the subcellular localization of Epac-1 and Rap1 proteins during Fcgamma-receptor-mediated phagocytosis in alveolar macrophages. Exp. Cell Res. 2008;314:255–263. doi: 10.1016/j.yexcr.2007.10.011. PubMed DOI PMC

Baillie G.S., Scott J.D., Houslay M.D. Compartmentalisation of phosphodiesterases and protein kinase A: Opposites attract. FEBS Lett. 2005;579:3264–3270. doi: 10.1016/j.febslet.2005.03.089. PubMed DOI

Klezovich-Benard M., Corre J.P., Jusforgues-Saklani H., Fiole D., Burjek N., Tournier J.N., Goossens P.L. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: A balance between stimulation by spores and differential disruption by toxins. PLoS Pathog. 2012;8:e1002481. doi: 10.1371/journal.ppat.1002481. PubMed DOI PMC

Le Cabec V., Carreno S., Moisand A., Bordier C., Maridonneau-Parini I. Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J. Immunol. 2002;169:2003–2009. doi: 10.4049/jimmunol.169.4.2003. PubMed DOI

Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. PubMed PMC

Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Nat. Acad. Sci. USA. 1998;95:5752–5756. doi: 10.1073/pnas.95.10.5752. PubMed DOI PMC

Santos J.L., Montes M.J., Gutierrez F., Ruiz C. Evaluation of phagocytic capacity with a modified flow cytometry technique. Immunol. Lett. 1995;45:1–4. doi: 10.1016/0165-2478(94)00180-Y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace