Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31226835
PubMed Central
PMC6628411
DOI
10.3390/toxins11060362
PII: toxins11060362
Knihovny.cz E-zdroje
- Klíčová slova
- 3′,5′-cyclic adenosine monophosphate (cAMP), Pyk2, Syk, Vav, adenylate cyclase toxin, edema toxin, opsonophagocytosis, phagocytes, signaling pathway,
- MeSH
- adenylátcyklasový toxin toxicita MeSH
- AMP cyklický metabolismus MeSH
- antigeny bakteriální toxicita MeSH
- bakteriální toxiny toxicita MeSH
- časoprostorová analýza MeSH
- fagocytóza účinky léků MeSH
- fagocyty účinky léků metabolismus MeSH
- fosforylace účinky léků MeSH
- lidé MeSH
- mikrofilamenta účinky léků MeSH
- opsoniny farmakologie MeSH
- receptory imunologické metabolismus MeSH
- signální transdukce účinky léků MeSH
- THP-1 buňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- AMP cyklický MeSH
- anthrax toxin MeSH Prohlížeč
- antigeny bakteriální MeSH
- bakteriální toxiny MeSH
- opsonin receptor MeSH Prohlížeč
- opsoniny MeSH
- receptory imunologické MeSH
Myeloid phagocytes have evolved to rapidly recognize invading pathogens and clear them through opsonophagocytic killing. The adenylate cyclase toxin (CyaA) of Bordetella pertussis and the edema toxin (ET) of Bacillus anthracis are both calmodulin-activated toxins with adenylyl cyclase activity that invade host cells and massively increase the cellular concentrations of a key second messenger molecule, 3',5'-cyclic adenosine monophosphate (cAMP). However, the two toxins differ in the kinetics and mode of cell entry and generate different cAMP concentration gradients within the cell. While CyaA rapidly penetrates cells directly across their plasma membrane, the cellular entry of ET depends on receptor-mediated endocytosis and translocation of the enzymatic subunit across the endosomal membrane. We show that CyaA-generated membrane-proximal cAMP gradient strongly inhibits the activation and phosphorylation of Syk, Vav, and Pyk2, thus inhibiting opsonophagocytosis. By contrast, at similar overall cellular cAMP levels, the ET-generated perinuclear cAMP gradient poorly inhibits the activation and phosphorylation of these signaling proteins. Hence, differences in spatiotemporal distribution of cAMP produced by the two adenylyl cyclase toxins differentially affect the opsonophagocytic signaling in myeloid phagocytes.
Zobrazit více v PubMed
Rosales C., Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed. Res. Int. 2017;2017:9042851. doi: 10.1155/2017/9042851. PubMed DOI PMC
Gordon S. Phagocytosis: An Immunobiologic Process. Immunity. 2016;44:463–475. doi: 10.1016/j.immuni.2016.02.026. PubMed DOI
Allen L.A., Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 1996;184:627–637. doi: 10.1084/jem.184.2.627. PubMed DOI PMC
Caron E., Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998;282:1717–1721. doi: 10.1126/science.282.5394.1717. PubMed DOI
Kaplan G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immunol. 1977;6:797–807. doi: 10.1111/j.1365-3083.1977.tb02153.x. PubMed DOI
Schafer G., Jacobs M., Wilkinson R.J., Brown G.D. Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes. J. Innate Immun. 2009;1:231–243. doi: 10.1159/000173703. PubMed DOI PMC
Ofek I., Goldhar J., Keisari Y., Sharon N. Nonopsonic phagocytosis of microorganisms. Ann. Rev. Microbiol. 1995;49:239–276. doi: 10.1146/annurev.mi.49.100195.001323. PubMed DOI
Shi Y., Tohyama Y., Kadono T., He J., Miah S.M., Hazama R., Tanaka C., Tohyama K., Yamamura H. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood. 2006;107:4554–4562. doi: 10.1182/blood-2005-09-3616. PubMed DOI
Crowley M.T., Costello P.S., Fitzer-Attas C.J., Turner M., Meng F., Lowell C., Tybulewicz V.L., DeFranco A.L. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J. Exp. Med. 1997;186:1027–1039. doi: 10.1084/jem.186.7.1027. PubMed DOI PMC
Paone C., Rodrigues N., Ittner E., Santos C., Buntru A., Hauck C.R. The Tyrosine Kinase Pyk2 Contributes to Complement-Mediated Phagocytosis in Murine Macrophages. J. Innate Immun. 2016;8:437–451. doi: 10.1159/000442944. PubMed DOI PMC
Kedzierska K., Vardaxis N.J., Jaworowski A., Crowe S.M. FcgammaR-mediated phagocytosis by human macrophages involves Hck, Syk, and Pyk2 and is augmented by GM-CSF. J. Leukoc. Biol. 2001;70:322–328. PubMed
Gakidis M.A., Cullere X., Olson T., Wilsbacher J.L., Zhang B., Moores S.L., Ley K., Swat W., Mayadas T., Brugge J.S. Vav GEFs are required for beta2 integrin-dependent functions of neutrophils. J. Cell Biol. 2004;166:273–282. doi: 10.1083/jcb.200404166. PubMed DOI PMC
Patel J.C., Hall A., Caron E. Vav regulates activation of Rac but not Cdc42 during FcgammaR-mediated phagocytosis. Mol. Biol. Cell. 2002;13:1215–1226. doi: 10.1091/mbc.02-01-0002. PubMed DOI PMC
Hall A.B., Gakidis M.A., Glogauer M., Wilsbacher J.L., Gao S., Swat W., Brugge J.S. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis. Immunity. 2006;24:305–316. doi: 10.1016/j.immuni.2006.02.005. PubMed DOI
Leppla S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA. 1982;79:3162–3166. doi: 10.1073/pnas.79.10.3162. PubMed DOI PMC
Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI
Ahuja N., Kumar P., Bhatnagar R. The adenylate cyclase toxins. Crit. Rev. Microbiol. 2004;30:187–196. doi: 10.1080/10408410490468795. PubMed DOI
Hewlett E., Wolff J. Soluble adenylate cyclase from the culture medium of Bordetella pertussis: Purification and characterization. J. Bacteriol. 1976;127:890–898. PubMed PMC
Aronoff D.M., Canetti C., Serezani C.H., Luo M., Peters-Golden M. Cutting edge: Macrophage inhibition by cyclic AMP (cAMP): Differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J. Immunol. 2005;174:595–599. doi: 10.4049/jimmunol.174.2.595. PubMed DOI
Yeager L.A., Chopra A.K., Peterson J.W. Bacillus anthracis edema toxin suppresses human macrophage phagocytosis and cytoskeletal remodeling via the protein kinase A and exchange protein activated by cyclic AMP pathways. Infect. Immun. 2009;77:2530–2543. doi: 10.1128/IAI.00905-08. PubMed DOI PMC
Liu S., Miller-Randolph S., Crown D., Moayeri M., Sastalla I., Okugawa S., Leppla S.H. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe. 2010;8:455–462. doi: 10.1016/j.chom.2010.10.004. PubMed DOI PMC
O’Brien J., Friedlander A., Dreier T., Ezzell J., Leppla S. Effects of anthrax toxin components on human neutrophils. Infect. Immun. 1985;47:306–310. PubMed PMC
Tournier J.N., Quesnel-Hellmann A., Mathieu J., Montecucco C., Tang W.J., Mock M., Vidal D.R., Goossens P.L. Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J. Immunol. 2005;174:4934–4941. doi: 10.4049/jimmunol.174.8.4934. PubMed DOI
Boyd A.P., Ross P.J., Conroy H., Mahon N., Lavelle E.C., Mills K.H. Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: Distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J. Immunol. 2005;175:730–738. doi: 10.4049/jimmunol.175.2.730. PubMed DOI
Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a011148. PubMed DOI PMC
Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC
Bumba L., Masin J., Fiser R., Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901. doi: 10.1371/journal.ppat.1000901. PubMed DOI PMC
Rogel A., Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J. Biol. Chem. 1992;267:22599–22605. PubMed
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC
Fiser R., Masin J., Bumba L., Pospisilova E., Fayolle C., Basler M., Sadilkova L., Adkins I., Kamanova J., Cerny J., et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8:e1002580. doi: 10.1371/journal.ppat.1002580. PubMed DOI PMC
Friebe S., van der Goot F.G., Burgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016;8:69. doi: 10.3390/toxins8030069. PubMed DOI PMC
Abrami L., Liu S., Cosson P., Leppla S.H., van der Goot F.G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 2003;160:321–328. doi: 10.1083/jcb.200211018. PubMed DOI PMC
Dal Molin F., Tonello F., Ladant D., Zornetta I., Zamparo I., Di Benedetto G., Zaccolo M., Montecucco C. Cell entry and cAMP imaging of anthrax edema toxin. EMBO J. 2006;25:5405–5413. doi: 10.1038/sj.emboj.7601408. PubMed DOI PMC
Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. J. Immunol. 2015;194:4901–4913. doi: 10.4049/jimmunol.1402941. PubMed DOI
Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Deshpande A., Hammon R.J., Sanders C.K., Graves S.W. Quantitative analysis of the effect of cell type and cellular differentiation on protective antigen binding to human target cells. FEBS Lett. 2006;580:4172–4175. doi: 10.1016/j.febslet.2006.06.070. PubMed DOI
Fujikura D., Toyomane K., Kamiya K., Mutoh M., Mifune E., Ohnuma M., Higashi H. ANTXR-1 and 2 independent modulation of a cytotoxicity mediated by anthrax toxin in human cells. J. Vet. Med. Sci. 2016;78:1311–1317. doi: 10.1292/jvms.15-0727. PubMed DOI PMC
Puhar A., Dal Molin F., Horvath S., Ladant D., Montecucco C. Anthrax edema toxin modulates PKA-and CREB-dependent signaling in two phases. PLoS ONE. 2008;3:e3564. doi: 10.1371/annotation/b72b80a6-ee81-49e6-a086-0292f6255d4f. PubMed DOI PMC
Raymond B., Leduc D., Ravaux L., Le Goffic R., Candela T., Raymondjean M., Goossens P.L., Touqui L. Edema toxin impairs anthracidal phospholipase A2 expression by alveolar macrophages. PLoS Pathog. 2007;3:e187. doi: 10.1371/journal.ppat.0030187. PubMed DOI PMC
Trinidad A.G., de la Puerta M.L., Fernandez N., Bayon Y., Crespo M.S., Alonso A. Coupling of C3bi to IgG inhibits the tyrosine phosphorylation signaling cascade downstream Syk and reduces cytokine induction in monocytes. J. Leukoc. Biol. 2006;79:1073–1082. doi: 10.1189/jlb.1205701. PubMed DOI
Chung I.C., OuYang C.N., Yuan S.N., Li H.P., Chen J.T., Shieh H.R., Chen Y.J., Ojcius D.M., Chu C.L., Yu J.S., et al. Pyk2 activates the NLRP3 inflammasome by directly phosphorylating ASC and contributes to inflammasome-dependent peritonitis. Sci. Rep. 2016;6:36214. doi: 10.1038/srep36214. PubMed DOI PMC
Yan S.R., Novak M.J. Beta2 integrin-dependent phosphorylation of protein-tyrosine kinase Pyk2 stimulated by tumor necrosis factor alpha and fMLP in human neutrophils adherent to fibrinogen. FEBS Lett. 1999;451:33–38. doi: 10.1016/S0014-5793(99)00539-6. PubMed DOI
Deckert M., Tartare-Deckert S., Couture C., Mustelin T., Altman A. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity. 1996;5:591–604. doi: 10.1016/S1074-7613(00)80273-3. PubMed DOI
Shen Y., Zhukovskaya N.L., Zimmer M.I., Soelaiman S., Bergson P., Wang C.R., Gibbs C.S., Tang W.J. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc. Natl. Acad. Sci. USA. 2004;101:3242–3247. doi: 10.1073/pnas.0306552101. PubMed DOI PMC
Kalamidas S.A., Kuehnel M.P., Peyron P., Rybin V., Rauch S., Kotoulas O.B., Houslay M., Hemmings B.A., Gutierrez M.G., Anes E., et al. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: Consequences for mycobacteria. J. Cell Sci. 2006;119:3686–3694. doi: 10.1242/jcs.03091. PubMed DOI
Pryzwansky K.B., Kidao S., Merricks E.P. Compartmentalization of PDE-4 and cAMP-dependent protein kinase in neutrophils and macrophages during phagocytosis. Cell Biochem. Biophys. 1998;28:251–275. doi: 10.1007/BF02737813. PubMed DOI
Pryzwansky K.B., Steiner A.L., Spitznagel J.K., Kapoor C.L. Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes. Science. 1981;211:407–410. doi: 10.1126/science.6261328. PubMed DOI
Aronoff D.M., Canetti C., Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J. Immunol. 2004;173:559–565. doi: 10.4049/jimmunol.173.1.559. PubMed DOI
Arumugham V.B., Ulivieri C., Onnis A., Finetti F., Tonello F., Ladant D., Baldari C.T. Compartmentalized Cyclic AMP Production by the Bordetella pertussis and Bacillus anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Front. Immunol. 2018;9:919. doi: 10.3389/fimmu.2018.00919. PubMed DOI PMC
Zaccolo M., Di Benedetto G., Lissandron V., Mancuso L., Terrin A., Zamparo I. Restricted diffusion of a freely diffusible second messenger: Mechanisms underlying compartmentalized cAMP signalling. Biochem. Soc. Trans. 2006;34:495–497. doi: 10.1042/BST0340495. PubMed DOI
Davare M.A., Avdonin V., Hall D.D., Peden E.M., Burette A., Weinberg R.J., Horne M.C., Hoshi T., Hell J.W. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science. 2001;293:98–101. doi: 10.1126/science.293.5527.98. PubMed DOI
Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI
Lomas O., Zaccolo M. Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides. Physiology (Bethesda) 2014;29:141–149. doi: 10.1152/physiol.00040.2013. PubMed DOI PMC
Di Benedetto G., Zoccarato A., Lissandron V., Terrin A., Li X., Houslay M.D., Baillie G.S., Zaccolo M. Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ. Res. 2008;103:836–844. doi: 10.1161/CIRCRESAHA.108.174813. PubMed DOI
Brock T.G., Serezani C.H., Carstens J.K., Peters-Golden M., Aronoff D.M. Effects of prostaglandin E2 on the subcellular localization of Epac-1 and Rap1 proteins during Fcgamma-receptor-mediated phagocytosis in alveolar macrophages. Exp. Cell Res. 2008;314:255–263. doi: 10.1016/j.yexcr.2007.10.011. PubMed DOI PMC
Baillie G.S., Scott J.D., Houslay M.D. Compartmentalisation of phosphodiesterases and protein kinase A: Opposites attract. FEBS Lett. 2005;579:3264–3270. doi: 10.1016/j.febslet.2005.03.089. PubMed DOI
Klezovich-Benard M., Corre J.P., Jusforgues-Saklani H., Fiole D., Burjek N., Tournier J.N., Goossens P.L. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: A balance between stimulation by spores and differential disruption by toxins. PLoS Pathog. 2012;8:e1002481. doi: 10.1371/journal.ppat.1002481. PubMed DOI PMC
Le Cabec V., Carreno S., Moisand A., Bordier C., Maridonneau-Parini I. Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J. Immunol. 2002;169:2003–2009. doi: 10.4049/jimmunol.169.4.2003. PubMed DOI
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. PubMed PMC
Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Nat. Acad. Sci. USA. 1998;95:5752–5756. doi: 10.1073/pnas.95.10.5752. PubMed DOI PMC
Santos J.L., Montes M.J., Gutierrez F., Ruiz C. Evaluation of phagocytic capacity with a modified flow cytometry technique. Immunol. Lett. 1995;45:1–4. doi: 10.1016/0165-2478(94)00180-Y. PubMed DOI
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins
Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation