Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins

. 2022 Feb 27 ; 10 (3) : . [epub] 20220227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35336094

Grantová podpora
22-15825S Czech Science Foundation

Odkazy

PubMed 35336094
PubMed Central PMC8953716
DOI 10.3390/microorganisms10030518
PII: microorganisms10030518
Knihovny.cz E-zdroje

The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.

Zobrazit více v PubMed

Yagupsky P., Porsch E., St Geme J.W., 3rd Kingella kingae: An emerging pathogen in young children. Pediatrics. 2011;127:557–565. doi: 10.1542/peds.2010-1867. PubMed DOI

Henriksen S.D., Bovre K. Moraxella kingii sp.nov., a haemolytic, saccharolytic species of the genus Moraxella. J. Gen. Microbiol. 1968;51:377–385. doi: 10.1099/00221287-51-3-377. PubMed DOI

Yagupsky P. Kingella kingae: Carriage, transmission, and disease. Clin. Microbiol. Rev. 2015;28:54–79. doi: 10.1128/CMR.00028-14. PubMed DOI PMC

Bøvre K., Henriksen S.D., Jonsson V. Correction of the specific epithet kingii in the combinations Moraxella kingii Henriksen and Bøvre 1968 and Pseudomonas kingii Jonsson 1970 to kingae. Int. J. Syst. Evol. Microbiol. 1974;24:307. doi: 10.1099/00207713-24-2-307. DOI

Henriksen S.D., Bøvre K. Transfer of Moraxella kingae Henriksen and Bøvre to the Genus Kingella gen. nov. in the Family Neisseriaceae. Int. J. Syst. Evol. Microbiol. 1976;26:447–450. doi: 10.1099/00207713-26-4-447. DOI

Ceroni D., Dubois-Ferrière V., Cherkaoui A., Lamah L., Renzi G., Lascombes P., Wilson B., Schrenzel J. 30 years of study of Kingella kingae: Post tenebras, lux. Future Microbiol. 2013;8:233–245. doi: 10.2217/fmb.12.144. PubMed DOI

Principi N., Esposito S. Kingella kingae infections in children. BMC Infect. Dis. 2015;15:260. doi: 10.1186/s12879-015-0986-9. PubMed DOI PMC

Gene A., Garcia-Garcia J.J., Sala P., Sierra M., Huguet R. Enhanced culture detection of Kingella kingae, a pathogen of increasing clinical importance in pediatrics. Pediatr. Infect. Dis. J. 2004;23:886–888. doi: 10.1097/01.inf.0000137591.76624.82. PubMed DOI

Moumile K., Merckx J., Glorion C., Berche P., Ferroni A. Osteoarticular infections caused by Kingella kingae in children: Contribution of polymerase chain reaction to the microbiologic diagnosis. Pediatr. Infect. Dis. J. 2003;22:837–839. doi: 10.1097/01.inf.0000083848.93457.e7. PubMed DOI

Verdier I., Gayet-Ageron A., Ploton C., Taylor P., Benito Y., Freydiere A.M., Chotel F., Berard J., Vanhems P., Vandenesch F. Contribution of a broad range polymerase chain reaction to the diagnosis of osteoarticular infections caused by Kingella kingae: Description of twenty-four recent pediatric diagnoses. Pediatr. Infect. Dis. J. 2005;24:692–696. doi: 10.1097/01.inf.0000172153.10569.dc. PubMed DOI

Dubnov-Raz G., Ephros M., Garty B.Z., Schlesinger Y., Maayan-Metzger A., Hasson J., Kassis I., Schwartz-Harari O., Yagupsky P. Invasive pediatric Kingella kingae Infections: A nationwide collaborative study. Pediatr. Infect. Dis. J. 2010;29:639–643. doi: 10.1097/INF.0b013e3181d57a6c. PubMed DOI

Yagupsky P. Detection of Respiratory Colonization by Kingella kingae and the Novel Kingella negevensis Species in Children: Uses and Methodology. J. Clin. Microbiol. 2018;56:e00633-18. doi: 10.1128/JCM.00633-18. PubMed DOI PMC

Gouveia C., Duarte M., Norte S., Arcangelo J., Pinto M., Correia C., Simoes M.J., Canhao H., Tavares D. Kingella kingae Displaced S. aureus as the Most Common Cause of Acute Septic Arthritis in Children of All Ages. Pediatr. Infect. Dis. J. 2021;40:623–627. doi: 10.1097/INF.0000000000003105. PubMed DOI

Yagupsky P., Dagan R., Prajgrod F., Merires M. Respiratory carriage of Kingella kingae among healthy children. Pediatr. Infect. Dis. J. 1995;14:673–678. doi: 10.1097/00006454-199508000-00005. PubMed DOI

Yagupsky P., Weiss-Salz I., Fluss R., Freedman L., Peled N., Trefler R., Porat N., Dagan R. Dissemination of Kingella kingae in the community and long-term persistence of invasive clones. Pediatr. Infect. Dis. J. 2009;28:707–710. doi: 10.1097/INF.0b013e31819f1f36. PubMed DOI

Yagupsky P., Peled N., Katz O. Epidemiological features of invasive Kingella kingae infections and respiratory carriage of the organism. J. Clin. Microbiol. 2002;40:4180–4184. doi: 10.1128/JCM.40.11.4180-4184.2002. PubMed DOI PMC

Yagupsky P., Porat N., Pinco E. Pharyngeal colonization by Kingella kingae in children with invasive disease. Pediatr. Infect. Dis. J. 2009;28:155–157. doi: 10.1097/INF.0b013e318184dbb8. PubMed DOI

Kehl-Fie T.E., Miller S.E., St Geme J.W., 3rd Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. J. Bacteriol. 2008;190:7157–7163. doi: 10.1128/JB.00884-08. PubMed DOI PMC

Porsch E.A., Kehl-Fie T.E., St Geme J.W., 3rd Modulation of Kingella kingae adherence to human epithelial cells by type IV Pili, capsule, and a novel trimeric autotransporter. mBio. 2012;3:e00372-12. doi: 10.1128/mBio.00372-12. PubMed DOI PMC

Basmaci R., Bonacorsi S., Ilharreborde B., Doit C., Lorrot M., Kahil M., Visseaux B., Houhou N., Bidet P. High respiratory virus oropharyngeal carriage rate during Kingella kingae osteoarticular infections in children. Future Microbiol. 2015;10:9–14. doi: 10.2217/fmb.14.117. PubMed DOI

Yagupsky P., Dagan R., Howard C.B., Einhorn M., Kassis I., Simu A. Clinical features and epidemiology of invasive Kingella kingae infections in southern Israel. Pediatrics. 1993;92:800–804. doi: 10.1542/peds.92.6.800. PubMed DOI

Sena A.C., Seed P., Nicholson B., Joyce M., Cunningham C.K. Kingella kingae endocarditis and a cluster investigation among daycare attendees. Pediatr. Infect. Dis. J. 2010;29:86–88. doi: 10.1097/INF.0b013e3181b48cc3. PubMed DOI

Kehl-Fie T.E., St Geme J.W., 3rd Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bacteriol. 2007;189:430–436. doi: 10.1128/JB.01319-06. PubMed DOI PMC

Ceroni D., Cherkaoui A., Ferey S., Kaelin A., Schrenzel J. Kingella kingae osteoarticular infections in young children: Clinical features and contribution of a new specific real-time PCR assay to the diagnosis. J. Pediatr. Orthop. 2010;30:301–304. doi: 10.1097/BPO.0b013e3181d4732f. PubMed DOI

Cherkaoui A., Ceroni D., Emonet S., Lefevre Y., Schrenzel J. Molecular diagnosis of Kingella kingae osteoarticular infections by specific real-time PCR assay. J. Med. Microbiol. 2009;58:65–68. doi: 10.1099/jmm.0.47707-0. PubMed DOI

Opota O., Laurent S., Pillonel T., Leger M., Trachsel S., Prod’hom G., Jaton K., Greub G. Genomics of the new species Kingella negevensis: Diagnostic issues and identification of a locus encoding a RTX toxin. Microbes Infect. 2017;19:546–552. doi: 10.1016/j.micinf.2017.08.001. PubMed DOI

El Houmami N., Bakour S., Bzdrenga J., Rathored J., Seligmann H., Robert C., Armstrong N., Schrenzel J., Raoult D., Yagupsky P., et al. Isolation and characterization of Kingella negevensis sp. nov., a novel Kingella species detected in a healthy paediatric population. Int. J. Syst. Evol. Microbiol. 2017;67:2370–2376. doi: 10.1099/ijsem.0.001957. PubMed DOI

Chang D.W., Nudell Y.A., Lau J., Zakharian E., Balashova N.V. RTX toxin plays a key role in Kingella kingae virulence in an infant rat model. Infect. Immun. 2014;82:2318–2328. doi: 10.1128/IAI.01636-14. PubMed DOI PMC

Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC

Linhartova I., Osicka R., Bumba L., Masin J., Sebo P. RTX Toxins: A Review. In: Gopalakrishnakone P., Stiles B., Alape-Girón A., Dubreuil J., Mandal M., editors. Microbial Toxins. 1st ed. Springer; Dordrecht, The Netherlands: 2015. pp. 1–29. Toxinology. DOI

Jorgensen S.E., Mulcahy P.F., Wu G.K., Louis C.F. Calcium accumulation in human and sheep erythrocytes that is induced by Escherichia coli hemolysin. Toxicon Off. J. Int. Soc. Toxinol. 1983;21:717–727. doi: 10.1016/0041-0101(83)90277-5. PubMed DOI

Bhakdi S., Mackman N., Nicaud J.M., Holland I.B. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect. Immun. 1986;52:63–69. doi: 10.1128/iai.52.1.63-69.1986. PubMed DOI PMC

Menestrina G., Mackman N., Holland I.B., Bhakdi S. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. Biochim. Biophys. Acta. 1987;905:109–117. doi: 10.1016/0005-2736(87)90014-9. PubMed DOI

Benz R., Schmid A., Wagner W., Goebel W. Pore formation by the Escherichia coli hemolysin: Evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect. Immun. 1989;57:887–895. doi: 10.1128/iai.57.3.887-895.1989. PubMed DOI PMC

Gray M., Szabo G., Otero A.S., Gray L., Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J. Biol. Chem. 1998;273:18260–18267. doi: 10.1074/jbc.273.29.18260. PubMed DOI

Bárcena-Uribarri I., Benz R., Winterhalter M., Zakharian E., Balashova N. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. Biochim. Biophys. Acta. 2015;1848:1536–1544. doi: 10.1016/j.bbamem.2015.03.036. PubMed DOI PMC

Osickova A., Balashova N., Masin J., Sulc M., Roderova J., Wald T., Brown A.C., Koufos E., Chang E.H., Giannakakis A., et al. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microb. Infect. 2018;7:178. doi: 10.1038/s41426-018-0179-x. PubMed DOI PMC

Mazzone A., Ricevuti G. Leukocyte CD11/CD18 integrins: Biological and clinical relevance. Haematologica. 1995;80:161–175. PubMed

Maldonado R., Wei R., Kachlany S.C., Kazi M., Balashova N.V. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb. Pathog. 2011;51:22–30. doi: 10.1016/j.micpath.2011.03.005. PubMed DOI PMC

Cavalieri S.J., Snyder I.S. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte function in vitro. Infect. Immun. 1982;37:966–974. doi: 10.1128/iai.37.3.966-974.1982. PubMed DOI PMC

Felmlee T., Pellett S., Welch R.A. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J. Bacteriol. 1985;163:94–105. doi: 10.1128/jb.163.1.94-105.1985. PubMed DOI PMC

Keane W.F., Welch R., Gekker G., Peterson P.K. Mechanism of Escherichia coli alpha-hemolysin-induced injury to isolated renal tubular cells. Am. J. Pathol. 1987;126:350–357. PubMed PMC

Bhakdi S., Greulich S., Muhly M., Eberspacher B., Becker H., Thiele A., Hugo F. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J. Exp. Med. 1989;169:737–754. doi: 10.1084/jem.169.3.737. PubMed DOI PMC

Suttorp N., Floer B., Schnittler H., Seeger W., Bhakdi S. Effects of Escherichia coli hemolysin on endothelial cell function. Infect. Immun. 1990;58:3796–3801. doi: 10.1128/iai.58.11.3796-3801.1990. PubMed DOI PMC

Mobley H.L., Green D.M., Trifillis A.L., Johnson D.E., Chippendale G.R., Lockatell C.V., Jones B.D., Warren J.W. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: Role of hemolysin in some strains. Infect. Immun. 1990;58:1281–1289. doi: 10.1128/iai.58.5.1281-1289.1990. PubMed DOI PMC

O’Hanley P., Lalonde G., Ji G. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: Efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect. Immun. 1991;59:1153–1161. doi: 10.1128/iai.59.3.1153-1161.1991. PubMed DOI PMC

Stanley P., Packman L.C., Koronakis V., Hughes C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science. 1994;266:1992–1996. doi: 10.1126/science.7801126. PubMed DOI

Lally E.T., Kieba I.R., Sato A., Green C.L., Rosenbloom J., Korostoff J., Wang J.F., Shenker B.J., Ortlepp S., Robinson M.K., et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J. Biol. Chem. 1997;272:30463–30469. doi: 10.1074/jbc.272.48.30463. PubMed DOI

Glaser P., Ladant D., Sezer O., Pichot F., Ullmann A., Danchin A. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: Cloning and expression in Escherichia coli. Mol. Microbiol. 1988;2:19–30. doi: 10.1111/j.1365-2958.1988.tb00003.x. PubMed DOI

Bellalou J., Sakamoto H., Ladant D., Geoffroy C., Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 1990;58:3242–3247. doi: 10.1128/iai.58.10.3242-3247.1990. PubMed DOI PMC

Rogel A., Meller R., Hanski E. Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J. Biol. Chem. 1991;266:3154–3161. doi: 10.1016/S0021-9258(18)49967-X. PubMed DOI

Hackett M., Guo L., Shabanowitz J., Hunt D.F., Hewlett E.L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. doi: 10.1126/science.7939682. PubMed DOI

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC

Havlicek V., Higgins L., Chen W., Halada P., Sebo P., Sakamoto H., Hackett M. Mass spectrometric analysis of recombinant adenylate cyclase toxin from Bordetella pertussis strain 18323/pHSP9. J. Mass Spectrom. 2001;36:384–391. doi: 10.1002/jms.139. PubMed DOI

Morova J., Osicka R., Masin J., Sebo P. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. USA. 2008;105:5355–5360. doi: 10.1073/pnas.0711400105. PubMed DOI PMC

Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E.L., Benz R., Sebo P. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: The role of pore size. Infect. Immun. 2013;81:4571–4582. doi: 10.1128/IAI.00711-13. PubMed DOI PMC

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC

Taichman N.S., Dean R.T., Sanderson C.J. Biochemical and morphological characterization of the killing of human monocytes by a leukotoxin derived from Actinobacillus actinomycetemcomitans. Infect. Immun. 1980;28:258–268. doi: 10.1128/iai.28.1.258-268.1980. PubMed DOI PMC

Taichman N.S., Simpson D.L., Sakurada S., Cranfield M., DiRienzo J., Slots J. Comparative studies on the biology of Actinobacillus actinomycetemcomitans leukotoxin in primates. Oral Microbiol. Immunol. 1987;2:97–104. doi: 10.1111/j.1399-302X.1987.tb00270.x. PubMed DOI

Simpson D.L., Berthold P., Taichman N.S. Killing of human myelomonocytic leukemia and lymphocytic cell lines by Actinobacillus actinomycetemcomitans leukotoxin. Infect. Immun. 1988;56:1162–1166. doi: 10.1128/iai.56.5.1162-1166.1988. PubMed DOI PMC

Balashova N.V., Crosby J.A., Al Ghofaily L., Kachlany S.C. Leukotoxin confers beta-hemolytic activity to Actinobacillus actinomycetemcomitans. Infect. Immun. 2006;74:2015–2021. doi: 10.1128/IAI.74.4.2015-2021.2006. PubMed DOI PMC

Balashova N.V., Shah C., Patel J.K., Megalla S., Kachlany S.C. Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene. 2009;443:42–47. doi: 10.1016/j.gene.2009.05.002. PubMed DOI

Brown A.C., Balashova N.V., Epand R.M., Epand R.F., Bragin A., Kachlany S.C., Walters M.J., Du Y., Boesze-Battaglia K., Lally E.T. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J. Biol. Chem. 2013;288:23607–23621. doi: 10.1074/jbc.M113.486654. PubMed DOI PMC

Reinholdt J., Poulsen K., Brinkmann C.R., Hoffmann S.V., Stapulionis R., Enghild J.J., Jensen U.B., Boesen T., Vorup-Jensen T. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: Interactions with human beta2 integrins and erythrocytes. Biochim. Biophys. Acta. 2013;1834:546–558. doi: 10.1016/j.bbapap.2012.12.004. PubMed DOI

Munksgaard P.S., Skals M., Reinholdt J., Poulsen K., Jensen M.R., Yang C., Leipziger J., Vorup-Jensen T., Praetorius H.A. Sialic acid residues are essential for cell lysis mediated by leukotoxin from Aggregatibacter actinomycetemcomitans. Infect. Immun. 2014;82:2219–2228. doi: 10.1128/IAI.01647-14. PubMed DOI PMC

Vega B.A., Schober L.T., Kim T., Belinka B.A., Jr., Kachlany S.C. Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA) Requires Death Receptor Fas, in Addition to LFA-1, To Trigger Cell Death in T Lymphocytes. Infect. Immun. 2019;87:e00309-19. doi: 10.1128/IAI.00309-19. PubMed DOI PMC

Kaehler K.L., Markham R.J., Muscoplat C.C., Johnson D.W. Evidence of species specificity in the cytocidal effects of Pasteurella haemolytica. Infect. Immun. 1980;30:615–616. doi: 10.1128/iai.30.2.615-616.1980. PubMed DOI PMC

Clinkenbeard K.D., Upton M.L. Lysis of bovine platelets by Pasteurella haemolytica leukotoxin. Am. J. Vet. Res. 1991;52:453–457. PubMed

Murphy G.L., Whitworth L.C., Clinkenbeard K.D., Clinkenbeard P.A. Hemolytic activity of the Pasteurella haemolytica leukotoxin. Infect. Immun. 1995;63:3209–3212. doi: 10.1128/iai.63.8.3209-3212.1995. PubMed DOI PMC

Wang J.F., Kieba I.R., Korostoff J., Guo T.L., Yamaguchi N., Rozmiarek H., Billings P.C., Shenker B.J., Lally E.T. Molecular and biochemical mechanisms of Pasteurella haemolytica leukotoxin-induced cell death. Microb. Pathog. 1998;25:317–331. doi: 10.1006/mpat.1998.0236. PubMed DOI

Batra S.A., Shanthalingam S., Munske G.R., Raghavan B., Kugadas A., Bavanthasivam J., Highlander S.K., Srikumaran S. Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep. Infect. Immun. 2015;83:3982–3988. doi: 10.1128/IAI.00733-15. PubMed DOI PMC

Frey J., Meier R., Gygi D., Nicolet J. Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae. Infect. Immun. 1991;59:3026–3032. doi: 10.1128/iai.59.9.3026-3032.1991. PubMed DOI PMC

Serebrin S., Rosendal S., Valdivieso-Garcia A., Little P.B. Endothelial cytotoxicity of Actinobacillus pleuropneumoniae. Res. Vet. Sci. 1991;50:18–22. doi: 10.1016/0034-5288(91)90047-R. PubMed DOI

Kamp E.M., Popma J.K., Anakotta J., Smits M.A. Identification of hemolytic and cytotoxic proteins of Actinobacillus pleuropneumoniae by use of monoclonal antibodies. Infect. Immun. 1991;59:3079–3085. doi: 10.1128/iai.59.9.3079-3085.1991. PubMed DOI PMC

Van Leengoed L.A., Dickerson H.W. Influence of calcium on secretion and activity of the cytolysins of Actinobacillus pleuropneumoniae. Infect. Immun. 1992;60:353–359. doi: 10.1128/iai.60.2.353-359.1992. PubMed DOI PMC

Frey J., Bosse J.T., Chang Y.F., Cullen J.M., Fenwick B., Gerlach G.F., Gygi D., Haesebrouck F., Inzana T.J., Jansen R., et al. Actinobacillus pleuropneumoniae RTX-toxins: Uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J. Gen. Microbiol. 1993;139:1723–1728. doi: 10.1099/00221287-139-8-1723. PubMed DOI

Stanley P., Koronakis V., Hughes C. Acylation of Escherichia coli hemolysin: A unique protein lipidation mechanism underlying toxin function. Microbiol. Mol. Biol. Rev. MMBR. 1998;62:309–333. doi: 10.1128/MMBR.62.2.309-333.1998. PubMed DOI PMC

Ramjeet M., Cox A.D., Hancock M.A., Mourez M., Labrie J., Gottschalk M., Jacques M. Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1. Mol. Microbiol. 2008;70:221–235. doi: 10.1111/j.1365-2958.2008.06409.x. PubMed DOI

Jansen R., Briaire J., Kamp E.M., Gielkens A.L., Smits M.A. Cloning and characterization of the Actinobacillus pleuropneumoniae-RTX-toxin III (ApxIII) gene. Infect. Immun. 1993;61:947–954. doi: 10.1128/iai.61.3.947-954.1993. PubMed DOI PMC

Vanden Bergh P.G., Zecchinon L.L., Fett T., Desmecht D. Probing of Actinobacillus pleuropneumoniae ApxIIIA toxin-dependent cytotoxicity towards mammalian peripheral blood mononucleated cells. BMC Res. Notes. 2008;1:121. doi: 10.1186/1756-0500-1-121. PubMed DOI PMC

Welch R.A., Pellett S. Transcriptional organization of the Escherichia coli hemolysin genes. J. Bacteriol. 1988;170:1622–1630. doi: 10.1128/jb.170.4.1622-1630.1988. PubMed DOI PMC

Wandersman C., Delepelaire P. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc. Natl. Acad. Sci. USA. 1990;87:4776–4780. doi: 10.1073/pnas.87.12.4776. PubMed DOI PMC

Glaser P., Sakamoto H., Bellalou J., Ullmann A., Danchin A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 1988;7:3997–4004. doi: 10.1002/j.1460-2075.1988.tb03288.x. PubMed DOI PMC

Lehours P., Freydiere A.M., Richer O., Burucoa C., Boisset S., Lanotte P., Prere M.F., Ferroni A., Lafuente C., Vandenesch F., et al. The rtxA toxin gene of Kingella kingae: A pertinent target for molecular diagnosis of osteoarticular infections. J. Clin. Microbiol. 2011;49:1245–1250. doi: 10.1128/JCM.01657-10. PubMed DOI PMC

Read A.F. The evolution of virulence. Trends. Microbiol. 1994;2:73–76. doi: 10.1016/0966-842X(94)90537-1. PubMed DOI

Holden M.T., Feil E.J., Lindsay J.A., Peacock S.J., Day N.P., Enright M.C., Foster T.J., Moore C.E., Hurst L., Atkin R., et al. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA. 2004;101:9786–9791. doi: 10.1073/pnas.0402521101. PubMed DOI PMC

Amit U., Porat N., Basmaci R., Bidet P., Bonacorsi S., Dagan R., Yagupsky P. Genotyping of invasive Kingella kingae isolates reveals predominant clones and association with specific clinical syndromes. Clin. Infect. Dis. 2012;55:1074–1079. doi: 10.1093/cid/cis622. PubMed DOI

Basmaci R., Yagupsky P., Ilharreborde B., Guyot K., Porat N., Chomton M., Thiberge J.M., Mazda K., Bingen E., Bonacorsi S., et al. Multilocus sequence typing and rtxA toxin gene sequencing analysis of Kingella kingae isolates demonstrates genetic diversity and international clones. PLoS ONE. 2012;7:e38078. doi: 10.1371/journal.pone.0038078. PubMed DOI PMC

Yagupsky P. Kingella kingae: From medical rarity to an emerging paediatric pathogen. Lancet Infect. Dis. 2004;4:358–367. doi: 10.1016/S1473-3099(04)01046-1. PubMed DOI

Kiang K.M., Ogunmodede F., Juni B.A., Boxrud D.J., Glennen A., Bartkus J.M., Cebelinski E.A., Harriman K., Koop S., Faville R., et al. Outbreak of osteomyelitis/septic arthritis caused by Kingella kingae among child care center attendees. Pediatrics. 2005;116:e206–e213. doi: 10.1542/peds.2004-2051. PubMed DOI

Rosey A.L., Abachin E., Quesnes G., Cadilhac C., Pejin Z., Glorion C., Berche P., Ferroni A. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J. Microbiol. Methods. 2007;68:88–93. doi: 10.1016/j.mimet.2006.06.010. PubMed DOI

Matta M., Wermert D., Podglajen I., Sanchez O., Buu-Hoi A., Gutmann L., Meyer G., Mainardi J.L. Molecular diagnosis of Kingella kingae pericarditis by amplification and sequencing of the 16S rRNA gene. J. Clin. Microbiol. 2007;45:3133–3134. doi: 10.1128/JCM.00809-07. PubMed DOI PMC

Chometon S., Benito Y., Chaker M., Boisset S., Ploton C., Berard J., Vandenesch F., Freydiere A.M. Specific real-time polymerase chain reaction places Kingella kingae as the most common cause of osteoarticular infections in young children. Pediatr. Infect. Dis. J. 2007;26:377–381. doi: 10.1097/01.inf.0000259954.88139.f4. PubMed DOI

Ilharreborde B., Bidet P., Lorrot M., Even J., Mariani-Kurkdjian P., Liguori S., Vitoux C., Lefevre Y., Doit C., Fitoussi F., et al. New real-time PCR-based method for Kingella kingae DNA detection: Application to samples collected from 89 children with acute arthritis. J. Clin. Microbiol. 2009;47:1837–1841. doi: 10.1128/JCM.00144-09. PubMed DOI PMC

Levy P.Y., Fournier P.E., Fenollar F., Raoult D. Systematic PCR detection in culture-negative osteoarticular infections. Am. J. Med. 2013;126 doi: 10.1016/j.amjmed.2013.04.027. PubMed DOI

Ferroni A., Al Khoury H., Dana C., Quesne G., Berche P., Glorion C., Pejin Z. Prospective survey of acute osteoarticular infections in a French paediatric orthopedic surgery unit. Clin. Microbiol. Infect. 2013;19:822–828. doi: 10.1111/clm.12031. PubMed DOI

Slinger R., Moldovan I., Bowes J., Chan F. Polymerase chain reaction detection of Kingella kingae in children with culture-negative septic arthritis in eastern Ontario. Paediatr. Child Health. 2016;21:79–82. doi: 10.1093/pch/21.2.79. PubMed DOI PMC

Haldar M., Butler M., Quinn C.D., Stratton C.W., Tang Y.W., Burnham C.A. Evaluation of a real-time PCR assay for simultaneous detection of Kingella kingae and Staphylococcus aureus from synovial fluid in suspected septic arthritis. Ann. Lab. Med. 2014;34:313–316. doi: 10.3343/alm.2014.34.4.313. PubMed DOI PMC

Paakkonen M. Septic arthritis in children: Diagnosis and treatment. Pediatr. Health Med. Ther. 2017;8:65–68. doi: 10.2147/PHMT.S115429. PubMed DOI PMC

Williams N., Cooper C., Cundy P. Kingella kingae septic arthritis in children: Recognising an elusive pathogen. J. Child. Orthop. 2014;8:91–95. doi: 10.1007/s11832-014-0549-4. PubMed DOI PMC

El Houmami N., Bzdrenga J., Durand G.A., Minodier P., Seligmann H., Prudent E., Bakour S., Bonacorsi S., Raoult D., Yagupsky P., et al. Molecular Tests That Target the RTX Locus Do Not Distinguish between Kingella kingae and the Recently Described Kingella negevensis Species. J. Clin. Microbiol. 2017;55:3113–3122. doi: 10.1128/JCM.00736-17. PubMed DOI PMC

El Houmami N., Durand G.A., Bzdrenga J., Darmon A., Minodier P., Seligmann H., Raoult D., Fournier P.E. A New Highly Sensitive and Specific Real-Time PCR Assay Targeting the Malate Dehydrogenase Gene of Kingella kingae and Application to 201 Pediatric Clinical Specimens. J. Clin. Microbiol. 2018;56:e00505-18. doi: 10.1128/JCM.00505-18. PubMed DOI PMC

Klein C., Peltier F., Pluquet E., Haraux E., Gouron R., Joseph C. Management of an outbreak of invasive Kingella kingae skeletal infections in a day care center. Arch. Pediatrie Organe Off. Soc. Fr. Pediatrie. 2021;28:12–15. doi: 10.1016/j.arcped.2020.11.005. PubMed DOI

Porsch E.A., Yagupsky P., St Geme J.W., 3rd Kingella negevensis shares multiple putative virulence factors with Kingella kingae. PLoS ONE. 2020;15:e0241511. doi: 10.1371/journal.pone.0241511. PubMed DOI PMC

Henderson I.R., Owen P., Nataro J.P. Molecular switches—The ON and OFF of bacterial phase variation. Mol. Microbiol. 1999;33:919–932. doi: 10.1046/j.1365-2958.1999.01555.x. PubMed DOI

Srikhanta Y.N., Maguire T.L., Stacey K.J., Grimmond S.M., Jennings M.P. The phasevarion: A genetic system controlling coordinated, random switching of expression of multiple genes. Proc. Natl. Acad. Sci. USA. 2005;102:5547–5551. doi: 10.1073/pnas.0501169102. PubMed DOI PMC

van der Woude M.W. Phase variation: How to create and coordinate population diversity. Curr. Opin. Microbiol. 2011;14:205–211. doi: 10.1016/j.mib.2011.01.002. PubMed DOI

Snyder L., Champness W., Champness W. Molecular Genetics of Bacteria. Volume 19 ASM Press; Washington, DC, USA: 1997.

van der Woude M.W., Baumler A.J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 2004;17:581–611. doi: 10.1128/CMR.17.3.581-611.2004. PubMed DOI PMC

Hood D.W., Deadman M.E., Jennings M.P., Bisercic M., Fleischmann R.D., Venter J.C., Moxon E.R. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl. Acad. Sci. USA. 1996;93:11121–11125. doi: 10.1073/pnas.93.20.11121. PubMed DOI PMC

Seib K.L., Peak I.R., Jennings M.P. Phase variable restriction-modification systems in Moraxella catarrhalis. FEMS Immunol. Med Microbiol. 2002;32:159–165. doi: 10.1016/S0928-8244(01)00294-2. PubMed DOI

Srikhanta Y.N., Fox K.L., Jennings M.P. The phasevarion: Phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat. Rev. Microbiol. 2010;8:196–206. doi: 10.1038/nrmicro2283. PubMed DOI

Srikhanta Y.N., Dowideit S.J., Edwards J.L., Falsetta M.L., Wu H.J., Harrison O.B., Fox K.L., Seib K.L., Maguire T.L., Wang A.H., et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog. 2009;5:e1000400. doi: 10.1371/journal.ppat.1000400. PubMed DOI PMC

Srikhanta Y.N., Gorrell R.J., Steen J.A., Gawthorne J.A., Kwok T., Grimmond S.M., Robins-Browne R.M., Jennings M.P. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS ONE. 2011;6:e27569. doi: 10.1371/journal.pone.0027569. PubMed DOI PMC

Gauntlett J.C., Nilsson H.O., Fulurija A., Marshall B.J., Benghezal M. Phase-variable restriction/modification systems are required for Helicobacter pylori colonization. Gut Pathog. 2014;6:35. doi: 10.1186/s13099-014-0035-z. PubMed DOI PMC

Srikhanta Y.N., Fung K.Y., Pollock G.L., Bennett-Wood V., Howden B.P., Hartland E.L. Phasevarion-Regulated Virulence in the Emerging Pediatric Pathogen Kingella kingae. Infect. Immun. 2017;85:e00319-17. doi: 10.1128/IAI.00319-17. PubMed DOI PMC

Wallin R.P., Lundqvist A., More S.H., von Bonin A., Kiessling R., Ljunggren H.G. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002;23:130–135. doi: 10.1016/S1471-4906(01)02168-8. PubMed DOI

Welch R.A. Pore-forming cytolysins of gram-negative bacteria. Mol. Microbiol. 1991;5:521–528. doi: 10.1111/j.1365-2958.1991.tb00723.x. PubMed DOI

Welch R.A. RTX toxin structure and function: A story of numerous anomalies and few analogies in toxin biology. Curr. Top Microbiol. Immunol. 2001;257:85–111. doi: 10.1007/978-3-642-56508-3_5. PubMed DOI

Ludwig A., Goebel W. Structure and mode of action of RTX toxins. In: Popoff M.R., Alouf J.E., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins. 3rd ed. Elsevier Academic Press; London, UK: 2006. pp. 547–569. DOI

Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim. Biophys. Acta. 2016;1858:526–537. doi: 10.1016/j.bbamem.2015.10.025. PubMed DOI

Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC

Ludwig A., Jarchau T., Benz R., Goebel W. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol. Gen. Genet. 1988;214:553–561. doi: 10.1007/BF00330494. PubMed DOI

Coote J.G. Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol. Rev. 1992;8:137–161. doi: 10.1111/j.1574-6968.1992.tb04961.x. PubMed DOI

Valeva A., Siegel I., Wylenzek M., Wassenaar T.M., Weis S., Heinz N., Schmitt R., Fischer C., Reinartz R., Bhakdi S., et al. Putative identification of an amphipathic alpha-helical sequence in hemolysin of Escherichia coli (HlyA) involved in transmembrane pore formation. Biol. Chem. 2008;389:1201–1207. doi: 10.1515/BC.2008.136. PubMed DOI

Ludwig A., Schmid A., Benz R., Goebel W. Mutations affecting pore formation by haemolysin from Escherichia coli. Mol. Gen. Genet. 1991;226:198–208. doi: 10.1007/BF00273604. PubMed DOI

Erb K., Vogel M., Wagner W., Goebel W. Alkaline phosphatase which lacks its own signal sequence becomes enzymatically active when fused to N-terminal sequences of Escherichia coli haemolysin (HlyA) Mol. Gen. Genet. 1987;208:88–93. doi: 10.1007/BF00330427. PubMed DOI

Wiles T.J., Mulvey M.A. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: Progress and perspectives. Future Microbiol. 2013;8:73–84. doi: 10.2217/fmb.12.131. PubMed DOI PMC

Ladant D., Ullmann A. Bordetella pertussis adenylate cyclase: A toxin with multiple talents. Trends Microbiol. 1999;7:172–176. doi: 10.1016/S0966-842X(99)01468-7. PubMed DOI

Hyland C., Vuillard L., Hughes C., Koronakis V. Membrane interaction of Escherichia coli hemolysin: Flotation and insertion-dependent labeling by phospholipid vesicles. J. Bacteriol. 2001;183:5364–5370. doi: 10.1128/JB.183.18.5364-5370.2001. PubMed DOI PMC

Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984;179:125–142. doi: 10.1016/0022-2836(84)90309-7. PubMed DOI

Benz R., Maier E., Ladant D., Ullmann A., Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 1994;269:27231–27239. doi: 10.1016/S0021-9258(18)46973-6. PubMed DOI

Osickova A., Osicka R., Maier E., Benz R., Sebo P. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 1999;274:37644–37650. doi: 10.1016/S0021-9258(19)52940-4. PubMed DOI

Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., Osicka R. Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2007;282:12419–12429. doi: 10.1074/jbc.M611226200. PubMed DOI

Roderova J., Osickova A., Sukova A., Mikusova G., Fiser R., Sebo P., Osicka R., Masin J. Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin. Sci. Rep. 2019;9:5758. doi: 10.1038/s41598-019-42200-2. PubMed DOI PMC

Powthongchin B., Angsuthanasombat C. Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment. Arch. Microbiol. 2009;191:1–9. doi: 10.1007/s00203-008-0421-3. PubMed DOI

Juntapremjit S., Thamwiriyasati N., Kurehong C., Prangkio P., Shank L., Powthongchin B., Angsuthanasombat C. Functional importance of the Gly cluster in transmembrane helix 2 of the Bordetella pertussis CyaA-hemolysin: Implications for toxin oligomerization and pore formation. Toxicon Off. J. Int. Soc. Toxinol. 2015;106:14–19. doi: 10.1016/j.toxicon.2015.09.006. PubMed DOI

Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., Sebo P., Osicka R. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 2017;7:9330. doi: 10.1038/s41598-017-09575-6. PubMed DOI PMC

Wald T., Petry-Podgorska I., Fiser R., Matousek T., Dedina J., Osicka R., Sebo P., Masin J. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal. Biochem. 2014;450:57–62. doi: 10.1016/j.ab.2013.10.039. PubMed DOI

Skals M., Bjaelde R.G., Reinholdt J., Poulsen K., Vad B.S., Otzen D.E., Leipziger J., Praetorius H.A. Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore. J. Biol. Chem. 2014;289:19098–19109. doi: 10.1074/jbc.M114.571414. PubMed DOI PMC

Goebel W., Hedgpeth J. Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. J. Bacteriol. 1982;151:1290–1298. doi: 10.1128/jb.151.3.1290-1298.1982. PubMed DOI PMC

Mackman N., Nicaud J.M., Gray L., Holland I.B. Genetical and functional organisation of the Escherichia coli haemolysin determinant 2001. Mol. Gen. Genet. 1985;201:282–288. doi: 10.1007/BF00425672. PubMed DOI

Barry E.M., Weiss A.A., Ehrmann I.E., Gray M.C., Hewlett E.L., Goodwin M.S. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J. Bacteriol. 1991;173:720–726. doi: 10.1128/jb.173.2.720-726.1991. PubMed DOI PMC

Sebo P., Glaser P., Sakamoto H., Ullmann A. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene. 1991;104:19–24. doi: 10.1016/0378-1119(91)90459-O. PubMed DOI

Issartel J.P., Koronakis V., Hughes C. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature. 1991;351:759–761. doi: 10.1038/351759a0. PubMed DOI

Lim K.B., Walker C.R., Guo L., Pellett S., Shabanowitz J., Hunt D.F., Hewlett E.L., Ludwig A., Goebel W., Welch R.A., et al. Escherichia coli alpha-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 2000;275:36698–36702. doi: 10.1074/jbc.C000544200. PubMed DOI

Osickova A., Khaliq H., Masin J., Jurnecka D., Sukova A., Fiser R., Holubova J., Stanek O., Sebo P., Osicka R. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 2020;295:9268–9280. doi: 10.1074/jbc.RA120.014122. PubMed DOI PMC

Hackett M., Walker C.B., Guo L., Gray M.C., Van Cuyk S., Ullmann A., Shabanowitz J., Hunt D.F., Hewlett E.L., Sebo P. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 1995;270:20250–20253. doi: 10.1074/jbc.270.35.20250. PubMed DOI

Basar T., Havlicek V., Bezouskova S., Halada P., Hackett M., Sebo P. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 1999;274:10777–10783. doi: 10.1074/jbc.274.16.10777. PubMed DOI

Basar T., Havlicek V., Bezouskova S., Hackett M., Sebo P. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 2001;276:348–354. doi: 10.1074/jbc.M006463200. PubMed DOI

Gygi D., Nicolet J., Frey J., Cross M., Koronakis V., Hughes C. Isolation of the Actinobacillus pleuropneumoniae haemolysin gene and the activation and secretion of the prohaemolysin by the HlyC, HlyB and HlyD proteins of Escherichia coli. Mol. Microbiol. 1990;4:123–128. doi: 10.1111/j.1365-2958.1990.tb02021.x. PubMed DOI

Forestier C., Welch R.A. Nonreciprocal complementation of the hlyC and lktC genes of the Escherichia coli hemolysin and Pasteurella haemolytica leukotoxin determinants. Infect. Immun. 1990;58:828–832. doi: 10.1128/iai.58.3.828-832.1990. PubMed DOI PMC

Westrop G., Hormozi K., da Costa N., Parton R., Coote J. Structure-function studies of the adenylate cyclase toxin of Bordetella pertussis and the leukotoxin of Pasteurella haemolytica by heterologous C protein activation and construction of hybrid proteins. J. Bacteriol. 1997;179:871–879. doi: 10.1128/jb.179.3.871-879.1997. PubMed DOI PMC

Greene N.P., Crow A., Hughes C., Koronakis V. Structure of a bacterial toxin-activating acyltransferase. Proc. Natl. Acad. Sci. USA. 2015;112:E3058–E3066. doi: 10.1073/pnas.1503832112. PubMed DOI PMC

Ludwig A., Garcia F., Bauer S., Jarchau T., Benz R., Hoppe J., Goebel W. Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. J. Bacteriol. 1996;178:5422–5430. doi: 10.1128/jb.178.18.5422-5430.1996. PubMed DOI PMC

Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., Benz R., Leclerc C., Sebo P. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. doi: 10.1021/bi050459b. PubMed DOI

Karst J.C., Ntsogo Enguene V.Y., Cannella S.E., Subrini O., Hessel A., Debard S., Ladant D., Chenal A. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014;289:30702–30716. doi: 10.1074/jbc.M114.580852. PubMed DOI PMC

O’Brien D.P., Cannella S.E., Voegele A., Raoux-Barbot D., Davi M., Douche T., Matondo M., Brier S., Ladant D., Chenal A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 2019;33:10065–10076. doi: 10.1096/fj.201802442RR. PubMed DOI

El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., Leclerc C. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 2003;278:38514–38521. doi: 10.1074/jbc.M304387200. PubMed DOI

Herlax V., Bakas L. Acyl chains are responsible for the irreversibility in the Escherichia coli alpha-hemolysin binding to membranes. Chem. Phys. Lipids. 2003;122:185–190. doi: 10.1016/S0009-3084(02)00191-3. PubMed DOI

Herlax V., Mate S., Rimoldi O., Bakas L. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J. Biol. Chem. 2009;284:25199–25210. doi: 10.1074/jbc.M109.009365. PubMed DOI PMC

Baumann U., Wu S., Flaherty K.M., McKay D.B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: A two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 1993;12:3357–3364. doi: 10.1002/j.1460-2075.1993.tb06009.x. PubMed DOI PMC

Chenal A., Sotomayor Pérez A.C., Ladant D. Structure and function of RTX toxins. In: Alouf J., Ladant D., Popoff M.R., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins. 4th ed. Elsevier; Amsterdam, The Netherlands: 2015. pp. 677–718. DOI

Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC

Boehm D.F., Welch R.A., Snyder I.S. Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect. Immun. 1990;58:1959–1964. doi: 10.1128/iai.58.6.1959-1964.1990. PubMed DOI PMC

Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., et al. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol. Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI

Motlova L., Klimova N., Fiser R., Sebo P., Bumba L. Continuous Assembly of beta-Roll Structures Is Implicated in the Type I-Dependent Secretion of Large Repeat-in-Toxins (RTX) Proteins. J. Mol. Biol. 2020;432:5696–5710. doi: 10.1016/j.jmb.2020.08.020. PubMed DOI

Blenner M.A., Shur O., Szilvay G.R., Cropek D.M., Banta S. Calcium-induced folding of a beta roll motif requires C-terminal entropic stabilization. J. Mol. Biol. 2010;400:244–256. doi: 10.1016/j.jmb.2010.04.056. PubMed DOI

Bauche C., Chenal A., Knapp O., Bodenreider C., Benz R., Chaffotte A., Ladant D. Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J. Biol. Chem. 2006;281:16914–16926. doi: 10.1074/jbc.M601594200. PubMed DOI

Chenal A., Guijarro J.I., Raynal B., Delepierre M., Ladant D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: Implication for protein secretion. J. Biol. Chem. 2009;284:1781–1789. doi: 10.1074/jbc.M807312200. PubMed DOI

Chenal A., Karst J.C., Sotomayor Perez A.C., Wozniak A.K., Baron B., England P., Ladant D. Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys. J. 2010;99:3744–3753. doi: 10.1016/j.bpj.2010.10.016. PubMed DOI PMC

Hewlett E.L., Gray L., Allietta M., Ehrmann I., Gordon V.M., Gray M.C. Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity. J. Biol. Chem. 1991;266:17503–17508. doi: 10.1016/S0021-9258(19)47400-0. PubMed DOI

Schindel C., Zitzer A., Schulte B., Gerhards A., Stanley P., Hughes C., Koronakis V., Bhakdi S., Palmer M. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Eur. J. Biochem. 2001;268:800–808. doi: 10.1046/j.1432-1327.2001.01937.x. PubMed DOI

Sanchez-Magraner L., Cortajarena A.L., Garcia-Pacios M., Arrondo J.L., Agirre J., Guerin D.M., Goni F.M., Ostolaza H. Interdomain Ca2+ effects in Escherichia coli alpha-haemolysin: Ca2+ binding to the C-terminal domain stabilizes both C- and N-terminal domains. Biochim. Biophys. Acta. 2010;1798:1225–1233. doi: 10.1016/j.bbamem.2010.03.007. PubMed DOI

Snyder I.S., Zwadyk P. Some factors affecting production and assay of Escherichia coli haemolysins. J. Gen. Microbiol. 1969;55:139–143. doi: 10.1099/00221287-55-1-139. PubMed DOI

Short E.C., Kurtz H.J. Properties of the Hemolytic Activities of Escherichia coli. Infect. Immun. 1971;3:678–687. doi: 10.1128/iai.3.5.678-687.1971. PubMed DOI PMC

Dobereiner A., Schmid A., Ludwig A., Goebel W., Benz R. The effects of calcium and other polyvalent cations on channel formation by Escherichia coli alpha-hemolysin in red blood cells and lipid bilayer membranes. Eur. J. Biochem. 1996;240:454–460. doi: 10.1111/j.1432-1033.1996.0454h.x. PubMed DOI

Rhodes C.R., Gray M.C., Watson J.M., Muratore T.L., Kim S.B., Hewlett E.L., Grisham C.M. Structural consequences of divalent metal binding by the adenylyl cyclase toxin of Bordetella pertussis. Arch. Biochem. Biophys. 2001;395:169–176. doi: 10.1006/abbi.2001.2553. PubMed DOI

Rose T., Sebo P., Bellalou J., Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J. Biol. Chem. 1995;270:26370–26376. doi: 10.1074/jbc.270.44.26370. PubMed DOI

Soloaga A., Ramirez J.M., Goni F.M. Reversible denaturation, self-aggregation, and membrane activity of Escherichia coli alpha-hemolysin, a protein stable in 6 M urea. Biochemistry. 1998;37:6387–6393. doi: 10.1021/bi9730994. PubMed DOI

Thomas S., Bakkes P.J., Smits S.H., Schmitt L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. Biochim. Biophys. Acta. 2014;1844:1500–1510. doi: 10.1016/j.bbapap.2014.05.006. PubMed DOI

Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog. 2021;17:e1009920. doi: 10.1371/journal.ppat.1009920. PubMed DOI PMC

Sotomayor Perez A.C., Karst J.C., Davi M., Guijarro J.I., Ladant D., Chenal A. Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the Bordetella pertussis adenylate cyclase toxin. J. Mol. Biol. 2010;397:534–549. doi: 10.1016/j.jmb.2010.01.031. PubMed DOI

Wang X., Stapleton J.A., Klesmith J.R., Hewlett E.L., Whitehead T.A., Maynard J.A. Fine Epitope Mapping of Two Antibodies Neutralizing the Bordetella Adenylate Cyclase Toxin. Biochemistry. 2017;56:1324–1336. doi: 10.1021/acs.biochem.6b01163. PubMed DOI PMC

Nicaud J.M., Mackman N., Gray L., Holland I.B. The C-terminal, 23 kDa peptide of E. coli haemolysin 2001 contains all the information necessary for its secretion by the haemolysin (Hly) export machinery. FEBS Lett. 1986;204:331–335. doi: 10.1016/0014-5793(86)80838-9. PubMed DOI

Masure H.R., Au D.C., Gross M.K., Donovan M.G., Storm D.R. Secretion of the Bordetella pertussis adenylate cyclase from Escherichia coli containing the hemolysin operon. Biochemistry. 1990;29:140–145. doi: 10.1021/bi00453a017. PubMed DOI

Sebo P., Ladant D. Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the Escherichia coli alpha-haemolysin translocator. Mol. Microbiol. 1993;9:999–1009. doi: 10.1111/j.1365-2958.1993.tb01229.x. PubMed DOI

Mackman N., Baker K., Gray L., Haigh R., Nicaud J.M., Holland I.B. Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J. 1987;6:2835–2841. doi: 10.1002/j.1460-2075.1987.tb02580.x. PubMed DOI PMC

Koronakis V., Koronakis E., Hughes C. Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J. 1989;8:595–605. doi: 10.1002/j.1460-2075.1989.tb03414.x. PubMed DOI PMC

Bejerano M., Nisan I., Ludwig A., Goebel W., Hanski E. Characterization of the C-terminal domain essential for toxic activity of adenylate cyclase toxin. Mol. Microbiol. 1999;31:381–392. doi: 10.1046/j.1365-2958.1999.01183.x. PubMed DOI

Stanley P., Koronakis V., Hughes C. Mutational analysis supports a role for multiple structural features in the C-terminal secretion signal of Escherichia coli haemolysin. Mol. Microbiol. 1991;5:2391–2403. doi: 10.1111/j.1365-2958.1991.tb02085.x. PubMed DOI

Blight M.A., Chervaux C., Holland I.B. Protein secretion pathway in Escherichia coli. Curr. Opin. Biotechnol. 1994;5:468–474. doi: 10.1016/0958-1669(94)90059-0. PubMed DOI

Hui D., Morden C., Zhang F., Ling V. Combinatorial analysis of the structural requirements of the Escherichia coli hemolysin signal sequence. J. Biol. Chem. 2000;275:2713–2720. doi: 10.1074/jbc.275.4.2713. PubMed DOI

Jumpertz T., Chervaux C., Racher K., Zouhair M., Blight M.A., Holland I.B., Schmitt L. Mutations affecting the extreme C terminus of Escherichia coli haemolysin A reduce haemolytic activity by altering the folding of the toxin. Microbiology. 2010;156:2495–2505. doi: 10.1099/mic.0.038562-0. PubMed DOI

Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., Sebo P. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 2016;6:29137. doi: 10.1038/srep29137. PubMed DOI PMC

Sakamoto H., Bellalou J., Sebo P., Ladant D. Bordetella pertussis adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J. Biol. Chem. 1992;267:13598–13602. doi: 10.1016/S0021-9258(18)42254-5. PubMed DOI

Masin J., Osickova A., Jurnecka D., Klimova N., Khaliq H., Sebo P., Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2020;295:9349–9365. doi: 10.1074/jbc.RA120.013630. PubMed DOI PMC

Wolff J., Cook G.H., Goldhammer A.R., Berkowitz S.A. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. USA. 1980;77:3841–3844. doi: 10.1073/pnas.77.7.3841. PubMed DOI PMC

Gentile F., Raptis A., Knipling L.G., Wolff J. Bordetella pertussis adenylate cyclase. Penetration into host cells. Eur. J. Biochem. 1988;175:447–453. doi: 10.1111/j.1432-1033.1988.tb14215.x. PubMed DOI

Rogel A., Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J. Biol. Chem. 1992;267:22599–22605. doi: 10.1016/S0021-9258(18)41715-2. PubMed DOI

Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., Sebo P. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 2010;75:1550–1562. doi: 10.1111/j.1365-2958.2010.07077.x. PubMed DOI

Vojtova-Vodolanova J., Basler M., Osicka R., Knapp O., Maier E., Cerny J., Benada O., Benz R., Sebo P. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. FASEB J. 2009;23:2831–2843. doi: 10.1096/fj.09-131250. PubMed DOI

Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 1988;263:2612–2618. doi: 10.1016/S0021-9258(18)69110-0. PubMed DOI

Guo Q., Shen Y., Lee Y.S., Gibbs C.S., Mrksich M., Tang W.J. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005;24:3190–3201. doi: 10.1038/sj.emboj.7600800. PubMed DOI PMC

Subrini O., Sotomayor-Perez A.C., Hessel A., Spiaczka-Karst J., Selwa E., Sapay N., Veneziano R., Pansieri J., Chopineau J., Ladant D., et al. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J. Biol. Chem. 2013;288:32585–32598. doi: 10.1074/jbc.M113.508838. PubMed DOI PMC

Sukova A., Bumba L., Srb P., Veverka V., Stanek O., Holubova J., Chmelik J., Fiser R., Sebo P., Masin J. Negative charge of the AC-to-Hly linking segment modulates calcium-dependent membrane activities of Bordetella adenylate cyclase toxin. Biochim. Biophys. Acta Biomembr. 2020;1862:183310. doi: 10.1016/j.bbamem.2020.183310. PubMed DOI

Voegele A., Sadi M., O’Brien D.P., Gehan P., Raoux-Barbot D., Davi M., Hoos S., Brule S., Raynal B., Weber P., et al. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. Adv. Sci. 2021;8:2003630. doi: 10.1002/advs.202003630. PubMed DOI PMC

Delepelaire P. Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta. 2004;1694:149–161. doi: 10.1016/j.bbamcr.2004.05.001. PubMed DOI

Gray L., Mackman N., Nicaud J.M., Holland I.B. The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin from Escherichia coli. Mol. Gen. Genet. 1986;205:127–133. doi: 10.1007/BF02428042. PubMed DOI

Felmlee T., Welch R.A. Alterations of amino acid repeats in the Escherichia coli hemolysin affect cytolytic activity and secretion. Proc. Natl. Acad. Sci. USA. 1988;85:5269–5273. doi: 10.1073/pnas.85.14.5269. PubMed DOI PMC

Juranka P., Zhang F., Kulpa J., Endicott J., Blight M., Holland I.B., Ling V. Characterization of the hemolysin transporter, HlyB, using an epitope insertion. J. Biol. Chem. 1992;267:3764–3770. doi: 10.1016/S0021-9258(19)50591-9. PubMed DOI

Thanabalu T., Koronakis E., Hughes C., Koronakis V. Substrate-induced assembly of a contiguous channel for protein export from E. coli: Reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J. 1998;17:6487–6496. doi: 10.1093/emboj/17.22.6487. PubMed DOI PMC

Balakrishnan L., Hughes C., Koronakis V. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. J. Mol. Biol. 2001;313:501–510. doi: 10.1006/jmbi.2001.5038. PubMed DOI

Higgins C.F., Hiles I.D., Salmond G.P., Gill D.R., Downie J.A., Evans I.J., Holland I.B., Gray L., Buckel S.D., Bell A.W., et al. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986;323:448–450. doi: 10.1038/323448a0. PubMed DOI

Holland I.B., Peherstorfer S., Kanonenberg K., Lenders M., Reimann S., Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus. 2016;7:1–46. doi: 10.1128/ecosalplus.ESP-0019-2015. PubMed DOI

Wagner W., Vogel M., Goebel W. Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J. Bacteriol. 1983;154:200–210. doi: 10.1128/jb.154.1.200-210.1983. PubMed DOI PMC

Hartlein M., Schiessl S., Wagner W., Rdest U., Kreft J., Goebel W. Transport of hemolysin by Escherichia coli. J. Cell. Biochem. 1983;22:87–97. doi: 10.1002/jcb.240220203. PubMed DOI

Pimenta A.L., Young J., Holland I.B., Blight M.A. Antibody analysis of the localisation, expression and stability of HlyD, the MFP component of the E. coli haemolysin translocator. Mol. Gen. Genet. 1999;261:122–132. doi: 10.1007/s004380050949. PubMed DOI

Mackman N., Nicaud J.M., Gray L., Holland I.B. Identification of polypeptides required for the export of haemolysin 2001 from E. coli. Mol. Gen. Genet. 1985;201:529–536. doi: 10.1007/BF00331351. PubMed DOI

Schmitt L., Benabdelhak H., Blight M.A., Holland I.B., Stubbs M.T. Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: Identification of a variable region within ABC helical domains. J. Mol. Biol. 2003;330:333–342. doi: 10.1016/S0022-2836(03)00592-8. PubMed DOI

Lecher J., Schwarz C.K., Stoldt M., Smits S.H., Willbold D., Schmitt L. An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain. Structure. 2012;20:1778–1787. doi: 10.1016/j.str.2012.08.005. PubMed DOI

Holland I.B., Schmitt L., Young J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review) Mol. Membr. Biol. 2005;22:29–39. doi: 10.1080/09687860500042013. PubMed DOI

Wang R.C., Seror S.J., Blight M., Pratt J.M., Broome-Smith J.K., Holland I.B. Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J. Mol. Biol. 1991;217:441–454. doi: 10.1016/0022-2836(91)90748-U. PubMed DOI

Gentschev I., Goebel W. Topological and functional studies on HlyB of Escherichia coli. Mol. Gen. Genet. 1992;232:40–48. doi: 10.1007/BF00299135. PubMed DOI

Gerlach J.H., Endicott J.A., Juranka P.F., Henderson G., Sarangi F., Deuchars K.L., Ling V. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature. 1986;324:485–489. doi: 10.1038/324485a0. PubMed DOI

Higgins C.F. ABC transporters: From microorganisms to man. Annu. Rev. Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. PubMed DOI

Benabdelhak H., Kiontke S., Horn C., Ernst R., Blight M.A., Holland I.B., Schmitt L. A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J. Mol. Biol. 2003;327:1169–1179. doi: 10.1016/S0022-2836(03)00204-3. PubMed DOI

Springer W., Goebel W. Synthesis and secretion of hemolysin by Escherichia coli. J. Bacteriol. 1980;144:53–59. doi: 10.1128/jb.144.1.53-59.1980. PubMed DOI PMC

Koronakis V., Koronakis E., Hughes C. Comparison of the haemolysin secretion protein HlyB from Proteus vulgaris and Escherichia coli; site-directed mutagenesis causing impairment of export function. Mol. Gen. Genet. 1988;213:551–555. doi: 10.1007/BF00339631. PubMed DOI

Koronakis E., Hughes C., Milisav I., Koronakis V. Protein exporter function and in vitro ATPase activity are correlated in ABC-domain mutants of HlyB. Mol. Microbiol. 1995;16:87–96. doi: 10.1111/j.1365-2958.1995.tb02394.x. PubMed DOI

Koronakis V., Hughes C., Koronakis E. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J. 1991;10:3263–3272. doi: 10.1002/j.1460-2075.1991.tb04890.x. PubMed DOI PMC

Rees D.C., Johnson E., Lewinson O. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 2009;10:218–227. doi: 10.1038/nrm2646. PubMed DOI PMC

Schulein R., Gentschev I., Schlor S., Gross R., Goebel W. Identification and characterization of two functional domains of the hemolysin translocator protein HlyD. Mol. Gen. Genet. 1994;245:203–211. doi: 10.1007/BF00283268. PubMed DOI

Lee M., Jun S.Y., Yoon B.Y., Song S., Lee K., Ha N.C. Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria. PLoS ONE. 2012;7:e40460. doi: 10.1371/journal.pone.0040460. PubMed DOI PMC

Kim J.S., Song S., Lee M., Lee S., Lee K., Ha N.C. Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria. Structure. 2016;24:477–485. doi: 10.1016/j.str.2015.12.012. PubMed DOI

Schulein R., Gentschev I., Mollenkopf H.J., Goebel W. A topological model for the haemolysin translocator protein HlyD. Mol. Gen. Genet. 1992;234:155–163. doi: 10.1007/BF00272357. PubMed DOI

Pimenta A.L., Racher K., Jamieson L., Blight M.A., Holland I.B. Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J. Bacteriol. 2005;187:7471–7480. doi: 10.1128/JB.187.21.7471-7480.2005. PubMed DOI PMC

Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 2000;405:914–919. doi: 10.1038/35016007. PubMed DOI

Koronakis V., Li J., Koronakis E., Stauffer K. Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol. Microbiol. 1997;23:617–626. doi: 10.1046/j.1365-2958.1997.d01-1880.x. PubMed DOI

Andersen C., Hughes C., Koronakis V. Electrophysiological behavior of the TolC channel-tunnel in planar lipid bilayers. J. Membr. Biol. 2002;185:83–92. doi: 10.1007/s00232-001-0113-2. PubMed DOI

Eswaran J., Hughes C., Koronakis V. Locking TolC entrance helices to prevent protein translocation by the bacterial type I export apparatus. J. Mol. Biol. 2003;327:309–315. doi: 10.1016/S0022-2836(03)00116-5. PubMed DOI

Pei X.Y., Hinchliffe P., Symmons M.F., Koronakis E., Benz R., Hughes C., Koronakis V. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc. Natl. Acad. Sci. USA. 2011;108:2112–2117. doi: 10.1073/pnas.1012588108. PubMed DOI PMC

Andersen C., Koronakis E., Hughes C., Koronakis V. An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol. Microbiol. 2002;44:1131–1139. doi: 10.1046/j.1365-2958.2002.02898.x. PubMed DOI

Young R., Bremer H. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem. J. 1976;160:185–194. doi: 10.1042/bj1600185. PubMed DOI PMC

Bakkes P.J., Jenewein S., Smits S.H., Holland I.B., Schmitt L. The rate of folding dictates substrate secretion by the Escherichia coli hemolysin type 1 secretion system. J. Biol. Chem. 2010;285:40573–40580. doi: 10.1074/jbc.M110.173658. PubMed DOI PMC

Lenders M.H., Weidtkamp-Peters S., Kleinschrodt D., Jaeger K.E., Smits S.H., Schmitt L. Directionality of substrate translocation of the hemolysin A Type I secretion system. Sci. Rep. 2015;5:12470. doi: 10.1038/srep12470. PubMed DOI PMC

O’Brien D.P., Perez A.C.S., Karst J., Cannella S.E., Enguene V.Y.N., Hessel A., Raoux-Barbot D., Voegele A., Subrini O., Davi M., et al. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough. Toxicon Off. J. Int. Soc. Toxinol. 2018;149:37–44. doi: 10.1016/j.toxicon.2018.01.007. PubMed DOI

Jones H.E., Holland I.B., Baker H.L., Campbell A.K. Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium. 1999;25:265–274. doi: 10.1054/ceca.1999.0028. PubMed DOI

Brown E.M., MacLeod R.J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 2001;81:239–297. doi: 10.1152/physrev.2001.81.1.239. PubMed DOI

Lenders M.H., Beer T., Smits S.H., Schmitt L. In vivo quantification of the secretion rates of the hemolysin A Type I secretion system. Sci. Rep. 2016;6:33275. doi: 10.1038/srep33275. PubMed DOI PMC

Lepesheva A., Osickova A., Holubova J., Jurnecka D., Knoblochova S., Espinosa-Vinals C., Bumba L., Skopova K., Fiser R., Osicka R., et al. Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins. Sci. Rep. 2021;11:19814. doi: 10.1038/s41598-021-99112-3. PubMed DOI PMC

Nicaud J.M., Mackman N., Gray L., Holland I.B. Characterisation of HlyC and mechanism of activation and secretion of haemolysin from E. coli 2001. FEBS Lett. 1985;187:339–344. doi: 10.1016/0014-5793(85)81272-2. PubMed DOI

Vakharia H., German G.J., Misra R. Isolation and characterization of Escherichia coli tolC mutants defective in secreting enzymatically active alpha-hemolysin. J. Bacteriol. 2001;183:6908–6916. doi: 10.1128/JB.183.23.6908-6916.2001. PubMed DOI PMC

Kanonenberg K., Spitz O., Erenburg I.N., Beer T., Schmitt L. Type I secretion system-it takes three and a substrate. FEMS Microbiol. Lett. 2018;365:fny094. doi: 10.1093/femsle/fny094. PubMed DOI

Valeva A., Walev I., Kemmer H., Weis S., Siegel I., Boukhallouk F., Wassenaar T.M., Chavakis T., Bhakdi S. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J. Biol. Chem. 2005;280:36657–36663. doi: 10.1074/jbc.M507690200. PubMed DOI

Vanden Bergh P.G., Zecchinon L.L., Fett T., Desmecht D. Porcine CD18 mediates Actinobacillus pleuropneumoniae ApxIII species-specific toxicity. Vet. Res. 2009;40:33. doi: 10.1051/vetres/2009016. PubMed DOI PMC

Ristow L.C., Welch R.A. RTX Toxins Ambush Immunity’s First Cellular Responders. Toxins. 2019;11:720. doi: 10.3390/toxins11120720. PubMed DOI PMC

Arnaout M.A. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050. doi: 10.1182/blood.V75.5.1037.1037. PubMed DOI

Fagerholm S.C., Guenther C., Llort Asens M., Savinko T., Uotila L.M. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front. Immunol. 2019;10:254. doi: 10.3389/fimmu.2019.00254. PubMed DOI PMC

Kishimoto T.K., Hollander N., Roberts T.M., Anderson D.C., Springer T.A. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell. 1987;50:193–202. doi: 10.1016/0092-8674(87)90215-7. PubMed DOI

Rahman W.U., Osickova A., Klimova N., Lora J., Balashova N., Osicka R. Binding of Kingella kingae RtxA Toxin Depends on Cell Surface Oligosaccharides, but Not on beta2 Integrins. Int. J. Mol. Sci. 2020;21:9092. doi: 10.3390/ijms21239092. PubMed DOI PMC

Ristow L.C., Tran V., Schwartz K.J., Pankratz L., Mehle A., Sauer J.D., Welch R.A. The Extracellular Domain of the beta2 Integrin beta Subunit (CD18) Is Sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans Leukotoxin Cytotoxic Activity. mBio. 2019;10:e01459-19. doi: 10.1128/mBio.01459-19. PubMed DOI PMC

Cortajarena A.L., Goni F.M., Ostolaza H. Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. J. Biol. Chem. 2001;276:12513–12519. doi: 10.1074/jbc.M006792200. PubMed DOI

Cortajarena A.L., Goni F.M., Ostolaza H. A receptor-binding region in Escherichia coli alpha-haemolysin. J. Biol. Chem. 2003;278:19159–19163. doi: 10.1074/jbc.M208552200. PubMed DOI

Vazquez R.F., Maté S.M., Bakás L.S., Fernández M.M., Malchiodi E.L., Herlax V.S. Novel evidence for the specific interaction between cholesterol and α-haemolysin of Escherichia coli. Biochem. J. 2014;458:481–489. doi: 10.1042/BJ20131432. PubMed DOI

Martin C., Requero M.A., Masin J., Konopasek I., Goni F.M., Sebo P., Ostolaza H. Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family. J. Bacteriol. 2004;186:3760–3765. doi: 10.1128/JB.186.12.3760-3765.2004. PubMed DOI PMC

Vojtova J., Kofronova O., Sebo P., Benada O. Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc. Res. Tech. 2006;69:119–129. doi: 10.1002/jemt.20277. PubMed DOI

Gonzalez Bullon D., Uribe K.B., Amuategi J., Martin C., Ostolaza H. Cholesterol stimulates the lytic activity of Adenylate Cyclase Toxin on lipid membranes by promoting toxin oligomerization and formation of pores with a greater effective size. FEBS J. 2021;288:6795–6814. doi: 10.1111/febs.16107. PubMed DOI PMC

Gable P., Eaton J., Confer D. Clinical Research. Slack Inc.; Thorofare, NJ, USA: 1985. Intoxication of human phagocytes by Bordetella adenylate cyclase toxin: Implication of a ganglioside receptor; p. A844.

Gordon V.M., Young W.W., Jr., Lechler S.M., Gray M.C., Leppla S.H., Hewlett E.L. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J. Biol. Chem. 1989;264:14792–14796. doi: 10.1016/S0021-9258(18)63769-X. PubMed DOI

Mrówczyńska L., Bobrowska-Hägerstrand M., Lindqvist C., Hägerstrand H. Bordetella Adenylate Cyclase Toxin Can Bind Ganglioside GM1. BIO. 2011;1:67–71. doi: 10.5618/bio.2011.v1.n1.4. DOI

Dileepan T., Kachlany S.C., Balashova N.V., Patel J., Maheswaran S.K. Human CD18 is the functional receptor for Aggregatibacter actinomycetemcomitans leukotoxin. Infect. Immun. 2007;75:4851–4856. doi: 10.1128/IAI.00314-07. PubMed DOI PMC

Nygren P., Balashova N., Brown A.C., Kieba I., Dhingra A., Boesze-Battaglia K., Lally E.T. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol. 2019;21:e12967. doi: 10.1111/cmi.12967. PubMed DOI PMC

Forman M.S., Nishikubo J.B., Han R.K., Le A., Balashova N.V., Kachlany S.C. Gangliosides block Aggregatibacter Actinomycetemcomitans leukotoxin (LtxA)-mediated hemolysis. Toxins. 2010;2:2824–2836. doi: 10.3390/toxins2122824. PubMed DOI PMC

Li H., Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI

Brown A.C., Koufos E., Balashova N.V., Boesze-Battaglia K., Lally E.T. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol. Oral Microbiol. 2016;31:94–105. doi: 10.1111/omi.12133. PubMed DOI PMC

Kieba I.R., Fong K.P., Tang H.Y., Hoffman K.E., Speicher D.W., Klickstein L.B., Lally E.T. Aggregatibacter actinomycetemcomitans leukotoxin requires beta-sheets 1 and 2 of the human CD11a beta-propeller for cytotoxicity. Cell Microbiol. 2007;9:2689–2699. doi: 10.1111/j.1462-5822.2007.00989.x. PubMed DOI PMC

Krueger E., Hayes S., Chang E.H., Yutuc S., Brown A.C. Receptor-Based Peptides for Inhibition of Leukotoxin Activity. ACS Infect. Dis. 2018;4:1073–1081. doi: 10.1021/acsinfecdis.7b00230. PubMed DOI PMC

Li J., Clinkenbeard K.D., Ritchey J.W. Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. Vet. Microbiol. 1999;67:91–97. doi: 10.1016/S0378-1135(99)00040-1. PubMed DOI

Jeyaseelan S., Hsuan S.L., Kannan M.S., Walcheck B., Wang J.F., Kehrli M.E., Lally E.T., Sieck G.C., Maheswaran S.K. Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infect. Immun. 2000;68:72–79. doi: 10.1128/IAI.68.1.72-79.2000. PubMed DOI PMC

Deshpande M.S., Ambagala T.C., Ambagala A.P., Kehrli M.E., Jr., Srikumaran S. Bovine CD18 is necessary and sufficient to mediate Mannheimia (Pasteurella) haemolytica leukotoxin-induced cytolysis. Infect. Immun. 2002;70:5058–5064. doi: 10.1128/IAI.70.9.5058-5068.2002. PubMed DOI PMC

Dileepan T., Thumbikat P., Walcheck B., Kannan M.S., Maheswaran S.K. Recombinant expression of bovine LFA-1 and characterization of its role as a receptor for Mannheimia haemolytica leukotoxin. Microb. Pathog. 2005;38:249–257. doi: 10.1016/j.micpath.2005.02.005. PubMed DOI

Gopinath R.S., Ambagala T.C., Deshpande M.S., Donis R.O., Srikumaran S. Mannheimia (Pasteurella) haemolytica leukotoxin binding domain lies within amino acids 1 to 291 of bovine CD18. Infect. Immun. 2005;73:6179–6182. doi: 10.1128/IAI.73.9.6179-6182.2005. PubMed DOI PMC

Thumbikat P., Dileepan T., Kannan M.S., Maheswaran S.K. Characterization of Mannheimia (Pasteurella) haemolytica leukotoxin interaction with bovine alveolar macrophage beta2 integrins. Vet. Res. 2005;36:771–786. doi: 10.1051/vetres:2005036. PubMed DOI

Dassanayake R.P., Maheswaran S.K., Srikumaran S. Monomeric expression of bovine beta2-integrin subunits reveals their role in Mannheimia haemolytica leukotoxin-induced biological effects. Infect. Immun. 2007;75:5004–5010. doi: 10.1128/IAI.00808-07. PubMed DOI PMC

Dileepan T., Kannan M.S., Walcheck B., Maheswaran S.K. Integrin-EGF-3 domain of bovine CD18 is critical for Mannheimia haemolytica leukotoxin species-specific susceptibility. FEMS Microbiol. Lett. 2007;274:67–72. doi: 10.1111/j.1574-6968.2007.00818.x. PubMed DOI

Shanthalingam S., Srikumaran S. Intact signal peptide of CD18, the beta-subunit of beta2-integrins, renders ruminants susceptible to Mannheimia haemolytica leukotoxin. Proc. Natl. Acad. Sci. USA. 2009;106:15448–15453. doi: 10.1073/pnas.0906775106. PubMed DOI PMC

Dileepan T., Kannan M.S., Walcheck B., Thumbikat P., Maheswaran S.K. Mapping of the binding site for Mannheimia haemolytica leukotoxin within bovine CD18. Infect. Immun. 2005;73:5233–5237. doi: 10.1128/IAI.73.8.5233-5237.2005. PubMed DOI PMC

Shanthalingam S., Tibary A., Beever J.E., Kasinathan P., Brown W.C., Srikumaran S. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proc. Natl. Acad. Sci. USA. 2016;113:13186–13190. doi: 10.1073/pnas.1613428113. PubMed DOI PMC

Hasan S., Osickova A., Bumba L., Novak P., Sebo P., Osicka R. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. doi: 10.1016/j.febslet.2014.12.023. PubMed DOI

Wald T., Osickova A., Masin J., Liskova P.M., Petry-Podgorska I., Matousek T., Sebo P., Osicka R. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog. Dis. 2016;74:ftw008. doi: 10.1093/femspd/ftw008. PubMed DOI

Bumba L., Masin J., Fiser R., Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901. doi: 10.1371/journal.ppat.1000901. PubMed DOI PMC

Paccani S.R., Finetti F., Davi M., Patrussi L., D’Elios M.M., Ladant D., Baldari C.T. The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse. J. Exp. Med. 2011;208:1317–1330. doi: 10.1084/jem.20101558. PubMed DOI PMC

Avila-Campos M.J. Haemolytic activity of Actinobacillus actinomycetemcomitans strains on different blood types. Rev. Inst. Med. Trop. Sao Paulo. 1995;37:215–217. doi: 10.1590/S0036-46651995000300006. PubMed DOI

Kimizuka R., Miura T., Okuda K. Characterization of Actinobacillus actinomycetemcomitans hemolysin. Microbiol. Immunol. 1996;40:717–723. doi: 10.1111/j.1348-0421.1996.tb01132.x. PubMed DOI

Haubek D., Dirienzo J.M., Tinoco E.M., Westergaard J., Lopez N.J., Chung C.P., Poulsen K., Kilian M. Racial tropism of a highly toxic clone of Actinobacillus actinomycetemcomitans associated with juvenile periodontitis. J. Clin. Microbiol. 1997;35:3037–3042. doi: 10.1128/jcm.35.12.3037-3042.1997. PubMed DOI PMC

Kiguchi K., Henning-Chubb C.B., Huberman E. Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes, and granulocytes are cell specific. J. Biochem. 1990;107:8–14. doi: 10.1093/oxfordjournals.jbchem.a123016. PubMed DOI

Kachlany S.C., Schwartz A.B., Balashova N.V., Hioe C.E., Tuen M., Le A., Kaur M., Mei Y., Rao J. Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells. Leuk. Res. 2010;34:777–785. doi: 10.1016/j.leukres.2009.08.022. PubMed DOI PMC

Fong K.P., Pacheco C.M., Otis L.L., Baranwal S., Kieba I.R., Harrison G., Hersh E.V., Boesze-Battaglia K., Lally E.T. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol. 2006;8:1753–1767. doi: 10.1111/j.1462-5822.2006.00746.x. PubMed DOI PMC

Baier C.J., Fantini J., Barrantes F.J. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci. Rep. 2011;1:69. doi: 10.1038/srep00069. PubMed DOI PMC

Kuehn M.J., Kesty N.C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005;19:2645–2655. doi: 10.1101/gad.1299905. PubMed DOI

Soderblom T., Oxhamre C., Wai S.N., Uhlen P., Aperia A., Uhlin B.E., Richter-Dahlfors A. Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell Microbiol. 2005;7:779–788. doi: 10.1111/j.1462-5822.2005.00510.x. PubMed DOI

Kulp A., Kuehn M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010;64:163–184. doi: 10.1146/annurev.micro.091208.073413. PubMed DOI PMC

Kaparakis-Liaskos M., Ferrero R.L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 2015;15:375–387. doi: 10.1038/nri3837. PubMed DOI

Roier S., Zingl F.G., Cakar F., Durakovic S., Kohl P., Eichmann T.O., Klug L., Gadermaier B., Weinzerl K., Prassl R., et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 2016;7:10515. doi: 10.1038/ncomms10515. PubMed DOI PMC

Toyofuku M., Nomura N., Eberl L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 2019;17:13–24. doi: 10.1038/s41579-018-0112-2. PubMed DOI

Hozbor D., Rodriguez M.E., Fernandez J., Lagares A., Guiso N., Yantorno O. Release of outer membrane vesicles from Bordetella pertussis. Curr. Microbiol. 1999;38:273–278. doi: 10.1007/PL00006801. PubMed DOI

Kato S., Kowashi Y., Demuth D.R. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 2002;32:1–13. doi: 10.1006/mpat.2001.0474. PubMed DOI

Balsalobre C., Silvan J.M., Berglund S., Mizunoe Y., Uhlin B.E., Wai S.N. Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol. Microbiol. 2006;59:99–112. doi: 10.1111/j.1365-2958.2005.04938.x. PubMed DOI

Donato G.M., Goldsmith C.S., Paddock C.D., Eby J.C., Gray M.C., Hewlett E.L. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett. 2012;586:459–465. doi: 10.1016/j.febslet.2012.01.032. PubMed DOI PMC

Nice J.B., Balashova N.V., Kachlany S.C., Koufos E., Krueger E., Lally E.T., Brown A.C. Aggregatibacter actinomycetemcomitans Leukotoxin Is Delivered to Host Cells in an LFA-1-Indepdendent Manner When Associated with Outer Membrane Vesicles. Toxins. 2018;10:414. doi: 10.3390/toxins10100414. PubMed DOI PMC

Szabo G., Gray M.C., Hewlett E.L. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J. Biol. Chem. 1994;269:22496–22499. doi: 10.1016/S0021-9258(17)31674-5. PubMed DOI

Lee S.J., Gray M.C., Zu K., Hewlett E.L. Oligomeric behavior of Bordetella pertussis adenylate cyclase toxin in solution. Arch. Biochem. Biophys. 2005;438:80–87. doi: 10.1016/j.abb.2005.04.001. PubMed DOI

Iwaki M., Ullmann A., Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol. Microbiol. 1995;17:1015–1024. doi: 10.1111/j.1365-2958.1995.mmi_17061015.x. PubMed DOI

Ludwig A., Benz R., Goebel W. Oligomerization of Escherichia coli haemolysin (HlyA) is involved in pore formation. Mol. Gen. Genet. 1993;241:89–96. doi: 10.1007/BF00280205. PubMed DOI

Moayeri M., Welch R.A. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect. Immun. 1994;62:4124–4134. doi: 10.1128/iai.62.10.4124-4134.1994. PubMed DOI PMC

Moayeri M., Welch R.A. Prelytic and lytic conformations of erythrocyte-associated Escherichia coli hemolysin. Infect. Immun. 1997;65:2233–2239. doi: 10.1128/iai.65.6.2233-2239.1997. PubMed DOI PMC

Lear J.D., Furblur U.G., Lally E.T., Tanaka J.C. Actinobacillus actinomycetemcomitans leukotoxin forms large conductance, voltage-gated ion channels when incorporated into planar lipid bilayers. Biochim. Biophys. Acta. 1995;1238:34–41. doi: 10.1016/0005-2736(95)00086-I. PubMed DOI

Iwase M., Lally E.T., Berthold P., Korchak H.M., Taichman N.S. Effects of cations and osmotic protectants on cytolytic activity of Actinobacillus actinomycetemcomitans leukotoxin. Infect. Immun. 1990;58:1782–1788. doi: 10.1128/iai.58.6.1782-1788.1990. PubMed DOI PMC

Karakelian D., Lear J.D., Lally E.T., Tanaka J.C. Characterization of Actinobacillus actinomycetemcomitans leukotoxin pore formation in HL60 cells. Biochim. Biophys. Acta. 1998;1406:175–187. doi: 10.1016/S0925-4439(98)00002-7. PubMed DOI

Brown A.C., Boesze-Battaglia K., Du Y., Stefano F.P., Kieba I.R., Epand R.F., Kakalis L., Yeagle P.L., Epand R.M., Lally E.T. Aggregatibacter actinomycetemcomitans leukotoxin cytotoxicity occurs through bilayer destabilization. Cell Microbiol. 2012;14:869–881. doi: 10.1111/j.1462-5822.2012.01762.x. PubMed DOI PMC

Ehrmann I.E., Gray M.C., Gordon V.M., Gray L.S., Hewlett E.L. Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 1991;278:79–83. doi: 10.1016/0014-5793(91)80088-k. PubMed DOI

Knapp O., Maier E., Masin J., Sebo P., Benz R. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: Role of voltage and pH. Biochim. Biophys. Acta. 2008;1778:260–269. doi: 10.1016/j.bbamem.2007.09.026. PubMed DOI

Menestrina G. Escherichia coli hemolysin permeabilizes small unilamellar vesicles loaded with calcein by a single-hit mechanism. FEBS Lett. 1988;232:217–220. doi: 10.1016/0014-5793(88)80420-4. PubMed DOI

Ostolaza H., Bartolome B., Ortiz de Zarate I., de la Cruz F., Goni F.M. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Biochim. Biophys. Acta. 1993;1147:81–88. doi: 10.1016/0005-2736(93)90318-T. PubMed DOI

Menestrina G., Dalla Serra M., Pederzolli C., Bregante M., Gambale F. Bacterial hemolysins and leukotoxins affect target cells by forming large exogenous pores into their plasma membrane: Escherichia coli hemolysin A as a case example. Biosci. Rep. 1995;15:543–551. doi: 10.1007/BF01204356. PubMed DOI

Skopova K., Tomalova B., Kanchev I., Rossmann P., Svedova M., Adkins I., Bibova I., Tomala J., Masin J., Guiso N., et al. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect. Immun. 2017;85:e00937-16. doi: 10.1128/IAI.00937-16. PubMed DOI PMC

Holubova J., Juhasz A., Masin J., Stanek O., Jurnecka D., Osickova A., Sebo P., Osicka R. Selective Enhancement of the Cell-Permeabilizing Activity of Adenylate Cyclase Toxin Does Not Increase Virulence of Bordetella pertussis. Int. J. Mol. Sci. 2021;22:11655. doi: 10.3390/ijms222111655. PubMed DOI PMC

Betsou F., Sebo P., Guiso N. CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 1993;61:3583–3589. doi: 10.1128/iai.61.9.3583-3589.1993. PubMed DOI PMC

Cannella S.E., Ntsogo Enguene V.Y., Davi M., Malosse C., Sotomayor Perez A.C., Chamot-Rooke J., Vachette P., Durand D., Ladant D., Chenal A. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci. Rep. 2017;7:42065. doi: 10.1038/srep42065. PubMed DOI PMC

Fiser R., Masin J., Basler M., Krusek J., Spulakova V., Konopasek I., Sebo P. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J. Biol. Chem. 2007;282:2808–2820. doi: 10.1074/jbc.M609979200. PubMed DOI

Seeger W., Walter H., Suttorp N., Muhly M., Bhakdi S. Thromboxane-mediated hypertension and vascular leakage evoked by low doses of Escherichia coli hemolysin in rabbit lungs. J. Clin. Investig. 1989;84:220–227. doi: 10.1172/JCI114144. PubMed DOI PMC

Bhakdi S., Muhly M., Korom S., Schmidt G. Effects of Escherichia coli hemolysin on human monocytes. Cytocidal action and stimulation of interleukin 1 release. J. Clin. Investig. 1990;85:1746–1753. doi: 10.1172/JCI114631. PubMed DOI PMC

Grimminger F., Sibelius U., Bhakdi S., Suttorp N., Seeger W. Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils. J. Clin. Investig. 1991;88:1531–1539. doi: 10.1172/JCI115463. PubMed DOI PMC

Konig B., Konig W. Induction and suppression of cytokine release (tumour necrosis factor-alpha; interleukin-6, interleukin-1 beta) by Escherichia coli pathogenicity factors (adhesions, alpha-haemolysin) Immunology. 1993;78:526–533. PubMed PMC

Konig B., Ludwig A., Goebel W., Konig W. Pore formation by the Escherichia coli alpha-hemolysin: Role for mediator release from human inflammatory cells. Infect. Immun. 1994;62:4611–4617. doi: 10.1128/iai.62.10.4611-4617.1994. PubMed DOI PMC

Ohguchi M., Ishisaki A., Okahashi N., Koide M., Koseki T., Yamato K., Noguchi T., Nishihara T. Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G2/M phase and apoptosis. Infect. Immun. 1998;66:5980–5987. doi: 10.1128/IAI.66.12.5980-5987.1998. PubMed DOI PMC

Claesson R., Johansson A., Belibasakis G., Hanstrom L., Kalfas S. Release and activation of matrix metalloproteinase 8 from human neutrophils triggered by the leukotoxin of Actinobacillus actinomycetemcomitans. J. Periodontal Res. 2002;37:353–359. doi: 10.1034/j.1600-0765.2002.00365.x. PubMed DOI

Wiles T.J., Dhakal B.K., Eto D.S., Mulvey M.A. Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol. Biol. Cell. 2008;19:1427–1438. doi: 10.1091/mbc.e07-07-0638. PubMed DOI PMC

Kloft N., Busch T., Neukirch C., Weis S., Boukhallouk F., Bobkiewicz W., Cibis I., Bhakdi S., Husmann M. Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem. Biophys. Res. Commun. 2009;385:503–506. doi: 10.1016/j.bbrc.2009.05.121. PubMed DOI

Dunne A., Ross P.J., Pospisilova E., Masin J., Meaney A., Sutton C.E., Iwakura Y., Tschopp J., Sebo P., Mills K.H. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol. 2010;185:1711–1719. doi: 10.4049/jimmunol.1000105. PubMed DOI

Hilbert D.W., Paulish-Miller T.E., Tan C.K., Carey A.J., Ulett G.C., Mordechai E., Adelson M.E., Gygax S.E., Trama J.P. Clinical Escherichia coli isolates utilize alpha-hemolysin to inhibit in vitro epithelial cytokine production. Microb. Infect. 2012;14:628–638. doi: 10.1016/j.micinf.2012.01.010. PubMed DOI

Dhakal B.K., Mulvey M.A. The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microb. 2012;11:58–69. doi: 10.1016/j.chom.2011.12.003. PubMed DOI PMC

Dietmann A., Millonig A., Combes V., Couraud P.O., Kachlany S.C., Grau G.E. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on endothelial cells. Microb. Pathog. 2013;61–62:43–50. doi: 10.1016/j.micpath.2013.05.001. PubMed DOI PMC

Svedova M., Masin J., Fiser R., Cerny O., Tomala J., Freudenberg M., Tuckova L., Kovar M., Dadaglio G., Adkins I., et al. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells. Immunol. Cell Biol. 2016;94:322–333. doi: 10.1038/icb.2015.87. PubMed DOI

Jeyaseelan S., Kannan M.S., Briggs R.E., Thumbikat P., Maheswaran S.K. Mannheimia haemolytica leukotoxin activates a nonreceptor tyrosine kinase signaling cascade in bovine leukocytes, which induces biological effects. Infect. Immun. 2001;69:6131–6139. doi: 10.1128/IAI.69.10.6131-6139.2001. PubMed DOI PMC

Troeger H., Richter J.F., Beutin L., Gunzel D., Dobrindt U., Epple H.J., Gitter A.H., Zeitz M., Fromm M., Schulzke J.D. Escherichia coli alpha-haemolysin induces focal leaks in colonic epithelium: A novel mechanism of bacterial translocation. Cell Microbiol. 2007;9:2530–2540. doi: 10.1111/j.1462-5822.2007.00978.x. PubMed DOI

Bucker R., Schulz E., Gunzel D., Bojarski C., Lee I.F., John L.J., Wiegand S., Janssen T., Wieler L.H., Dobrindt U., et al. alpha-Haemolysin of Escherichia coli in IBD: A potentiator of inflammatory activity in the colon. Gut. 2014;63:1893–1901. doi: 10.1136/gutjnl-2013-306099. PubMed DOI

Johansson A., Claesson R., Hanstrom L., Sandstrom G., Kalfas S. Polymorphonuclear leukocyte degranulation induced by leukotoxin from Actinobacillus actinomycetemcomitans. J. Periodontal Res. 2000;35:85–92. doi: 10.1034/j.1600-0765.2000.035002085.x. PubMed DOI

Kelk P., Claesson R., Hanstrom L., Lerner U.H., Kalfas S., Johansson A. Abundant secretion of bioactive interleukin-1beta by human macrophages induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect. Immun. 2005;73:453–458. doi: 10.1128/IAI.73.1.453-458.2005. PubMed DOI PMC

Kelk P., Claesson R., Chen C., Sjostedt A., Johansson A. IL-1beta secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin. Int. J. Med Microbiol. IJMM. 2008;298:529–541. doi: 10.1016/j.ijmm.2007.06.005. PubMed DOI

Hiyoshi T., Domon H., Maekawa T., Nagai K., Tamura H., Takahashi N., Yonezawa D., Miyoshi T., Yoshida A., Tabeta K., et al. Aggregatibacter actinomycetemcomitans induces detachment and death of human gingival epithelial cells and fibroblasts via elastase release following leukotoxin-dependent neutrophil lysis. Microbiol. Immunol. 2019;63:100–110. doi: 10.1111/1348-0421.12672. PubMed DOI

May A.K., Sawyer R.G., Gleason T., Whitworth A., Pruett T.L. In vivo cytokine response to Escherichia coli alpha-hemolysin determined with genetically engineered hemolytic and nonhemolytic E. coli variants. Infect. Immun. 1996;64:2167–2171. doi: 10.1128/iai.64.6.2167-2171.1996. PubMed DOI PMC

Gleason T.G., Houlgrave C.W., May A.K., Crabtree T.D., Sawyer R.G., Denham W., Norman J.G., Pruett T.L. Hemolytically active (acylated) alpha-hemolysin elicits interleukin-1beta (IL-1beta) but augments the lethality of Escherichia coli by an IL-1- and tumor necrosis factor-independent mechanism. Infect. Immun. 1998;66:4215–4221. doi: 10.1128/IAI.66.9.4215-4221.1998. PubMed DOI PMC

Murthy A.M.V., Phan M.D., Peters K.M., Nhu N.T.K., Welch R.A., Ulett G.C., Schembri M.A., Sweet M.J. Regulation of hemolysin in uropathogenic Escherichia coli fine-tunes killing of human macrophages. Virulence. 2018;9:967–980. doi: 10.1080/21505594.2018.1465786. PubMed DOI PMC

Verma V., Kumar P., Gupta S., Yadav S., Dhanda R.S., Thorlacius H., Yadav M. alpha-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci. Rep. 2020;10:12653. doi: 10.1038/s41598-020-69501-1. PubMed DOI PMC

Uhlén P., Laestadius A., Jahnukainen T., Söderblom T., Bäckhed F., Celsi G., Brismar H., Normark S., Aperia A., Richter-Dahlfors A. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature. 2000;405:694–697. doi: 10.1038/35015091. PubMed DOI

Koschinski A., Repp H., Unver B., Dreyer F., Brockmeier D., Valeva A., Bhakdi S., Walev I. Why Escherichia coli alpha-hemolysin induces calcium oscillations in mammalian cells-the pore is on its own. FASEB J. 2006;20:973–975. doi: 10.1096/fj.05-4561fje. PubMed DOI

Huffman D.L., Abrami L., Sasik R., Corbeil J., van der Goot F.G., Aroian R.V. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc. Natl. Acad. Sci. USA. 2004;101:10995–11000. doi: 10.1073/pnas.0404073101. PubMed DOI PMC

Skals M., Jorgensen N.R., Leipziger J., Praetorius H.A. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc. Natl. Acad. Sci. USA. 2009;106:4030–4035. doi: 10.1073/pnas.0807044106. PubMed DOI PMC

Munksgaard P.S., Vorup-Jensen T., Reinholdt J., Soderstrom C.M., Poulsen K., Leipziger J., Praetorius H.A., Skals M. Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes. Cell Microbiol. 2012;14:1904–1920. doi: 10.1111/cmi.12021. PubMed DOI

Fagerberg S.K., Jakobsen M.R., Skals M., Praetorius H.A. Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from Aggregatibacter actinomycetemcomitans and alpha-Hemolysin from Escherichia coli. Infect. Immun. 2016;84:3114–3130. doi: 10.1128/IAI.00674-16. PubMed DOI PMC

Prince D.J., Patel D., Kachlany S.C. Leukotoxin (LtxA/Leukothera) induces ATP expulsion via pannexin-1 channels and subsequent cell death in malignant lymphocytes. Sci. Rep. 2021;11:18086. doi: 10.1038/s41598-021-97545-4. PubMed DOI PMC

Therkildsen J.R., Christensen M.G., Tingskov S.J., Wehmoller J., Norregaard R., Praetorius H.A. Lack of P2X7 Receptors Protects against Renal Fibrosis after Pyelonephritis with alpha-Hemolysin-Producing Escherichia coli. Am. J. Pathol. 2019;189:1201–1211. doi: 10.1016/j.ajpath.2019.02.013. PubMed DOI

Schulz E., Schumann M., Schneemann M., Dony V., Fromm A., Nagel O., Schulzke J.D., Bucker R. Escherichia coli Alpha-Hemolysin HlyA Induces Host Cell Polarity Changes, Epithelial Barrier Dysfunction and Cell Detachment in Human Colon Carcinoma Caco-2 Cell Model via PTEN-Dependent Dysregulation of Cell Junctions. Toxins. 2021;13:520. doi: 10.3390/toxins13080520. PubMed DOI PMC

Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI

Friedman R.L., Fiederlein R.L., Glasser L., Galgiani J.N. Bordetella pertussis adenylate cyclase: Effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect. Immun. 1987;55:135–140. doi: 10.1128/iai.55.1.135-140.1987. PubMed DOI PMC

Eby J.C., Gray M.C., Hewlett E.L. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 2014;82:5256–5269. doi: 10.1128/IAI.02487-14. PubMed DOI PMC

Ahmad J.N., Cerny O., Linhartova I., Masin J., Osicka R., Sebo P. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol. 2016;18:384–398. doi: 10.1111/cmi.12519. PubMed DOI

Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI

Hasan S., Rahman W.U., Sebo P., Osicka R. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Toxins. 2019;11:362. doi: 10.3390/toxins11060362. PubMed DOI PMC

Ahmad J.N., Holubova J., Benada O., Kofronova O., Stehlik L., Vasakova M., Sebo P. Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio. 2019;10:e01743-19. doi: 10.1128/mBio.01743-19. PubMed DOI PMC

Ahmad J.N., Sebo P. Bacterial RTX toxins and host immunity. Curr. Opin. Infect. Dis. 2021;34:187–196. doi: 10.1097/QCO.0000000000000726. PubMed DOI

Fiser R., Masin J., Bumba L., Pospisilova E., Fayolle C., Basler M., Sadilkova L., Adkins I., Kamanova J., Cerny J., et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8:e1002580. doi: 10.1371/journal.ppat.1002580. PubMed DOI PMC

Basler M., Masin J., Osicka R., Sebo P. Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect. Immun. 2006;74:2207–2214. doi: 10.1128/IAI.74.4.2207-2214.2006. PubMed DOI PMC

Hewlett E.L., Donato G.M., Gray M.C. Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: More than just making cyclic AMP! Mol. Microbiol. 2006;59:447–459. doi: 10.1111/j.1365-2958.2005.04958.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...