Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32461253
PubMed Central
PMC7363117
DOI
10.1074/jbc.ra120.014122
PII: S0021-9258(17)48951-4
Knihovny.cz E-zdroje
- Klíčová slova
- RTX toxin, acylation, acyltransferase, adenylate cyclase toxin (CyaA), bacterial toxin, cytotoxicity, cytotoxin (RtxA), fatty acid, fatty acyl, posttranslational modification, protein acylation, protein translocation, protoxin, α-hemolysin (HlyA),
- MeSH
- acyltransferasy metabolismus MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- buněčné linie MeSH
- hemolyziny metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acyltransferasy MeSH
- bakteriální proteiny MeSH
- hemolyziny MeSH
- mastné kyseliny MeSH
In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl-acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.
Department of Biochemistry Faculty of Science Charles University Prague Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Linhartová I., Bumba L., Mašín J., Basler M., Osička R., Kamanová J., Procházková K., Adkins I., Hejnová-Holubová J., Sadílková L., Morová J., and Sebo P. (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 10.1111/j.1574-6976.2010.00231.x PubMed DOI PMC
Barry E. M., Weiss A. A., Ehrmann I. E., Gray M. C., Hewlett E. L., and Goodwin M. S. (1991) Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J. Bacteriol. 173, 720–726 10.1128/jb.173.2.720-726.1991 PubMed DOI PMC
Goebel W., and Hedgpeth J. (1982) Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. J. Bacteriol. 151, 1290–1298 10.1128/JB.151.3.1290-1298.1982 PubMed DOI PMC
Mackman N., Nicaud J. M., Gray L., and Holland I. B. (1985) Genetical and functional organisation of the Escherichia coli haemolysin determinant 2001. Mol. Gen. Genet. 201, 282–288 10.1007/BF00425672 PubMed DOI
Osickova A., Balashova N., Masin J., Sulc M., Roderova J., Wald T., Brown A. C., Koufos E., Chang E. H., Giannakakis A., Lally E. T., and Osicka R. (2018) Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 7, 178 10.1038/s41426-018-0179-x PubMed DOI PMC
Sebo P., Glaser P., Sakamoto H., and Ullmann A. (1991) High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene 104, 19–24 10.1016/0378-1119(91)90459-O PubMed DOI
Issartel J. P., Koronakis V., and Hughes C. (1991) Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351, 759–761 10.1038/351759a0 PubMed DOI
Stanley P., Packman L. C., Koronakis V., and Hughes C. (1994) Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science 266, 1992–1996 10.1126/science.7801126 PubMed DOI
Lim K. B., Walker C. R., Guo L., Pellett S., Shabanowitz J., Hunt D. F., Hewlett E. L., Ludwig A., Goebel W., Welch R. A., and Hackett M. (2000) Escherichia coli α-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 275, 36698–36702 10.1074/jbc.C000544200 PubMed DOI
Hackett M., Guo L., Shabanowitz J., Hunt D. F., and Hewlett E. L. (1994) Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266, 433–435 10.1126/science.7939682 PubMed DOI
Havlícek V., Higgins L., Chen W., Halada P., Sebo P., Sakamoto H., and Hackett M. (2001) Mass spectrometric analysis of recombinant adenylate cyclase toxin from Bordetella pertussis strain 18323/pHSP9. J Mass Spectrom 36, 384–391 10.1002/jms.139 PubMed DOI
Bouchez V., Douche T., Dazas M., Delaplane S., Matondo M., Chamot-Rooke J., and Guiso N. (2017) Characterization of post-translational modifications and cytotoxic properties of the adenylate-cyclase hemolysin produced by various Bordetella pertussis and Bordetella parapertussis isolates. Toxins (Basel) 9, 304 10.3390/toxins9100304 PubMed DOI PMC
Basar T., Havlícek V., Bezouskova S., Hackett M., and Sebo P. (2001) Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 276, 348–354 10.1074/jbc.M006463200 PubMed DOI
Basar T., Havlícek V., Bezousková S., Halada P., Hackett M., and Sebo P. (1999) The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 274, 10777–10783 10.1074/jbc.274.16.10777 PubMed DOI
Hackett M., Walker C. B., Guo L., Gray M. C., Van Cuyk S., Ullmann A., Shabanowitz J., Hunt D. F., Hewlett E. L., and Sebo P. (1995) Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 270, 20250–20253 10.1074/jbc.270.35.20250 PubMed DOI
Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., Sebo P., and Osicka R. (2017) The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 7, 9330 10.1038/s41598-017-09575-6 PubMed DOI PMC
Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., Benz R., Leclerc C., and Sebo P. (2005) Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44, 12759–12766 10.1021/bi050459b PubMed DOI
Balashova N. V., Shah C., Patel J. K., Megalla S., and Kachlany S. C. (2009) Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene 443, 42–47 10.1016/j.gene.2009.05.002 PubMed DOI
Karst J. C., Ntsogo Enguéné V. Y., Cannella S. E., Subrini O., Hessel A., Debard S., Ladant D., and Chenal A. (2014) Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 289, 30702–30716 10.1074/jbc.M114.580852 PubMed DOI PMC
O'Brien D. P., Cannella S. E., Voegele A., Raoux-Barbot D., Davi M., Douché T., Matondo M., Brier S., Ladant D., and Chenal A. (2019) Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 33, 10065–10076 10.1096/fj.201802442RR PubMed DOI
El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., and Leclerc C. (2003) Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 278, 38514–38521 10.1074/jbc.M304387200 PubMed DOI
Herlax V., and Bakás L. (2003) Acyl chains are responsible for the irreversibility in the Escherichia coli α-hemolysin binding to membranes. Chem. Phys. Lipids 122, 185–190 10.1016/S0009-3084(02)00191-3 PubMed DOI
Herlax V., Maté S., Rimoldi O., and Bakás L. (2009) Relevance of fatty acid covalently bound to Escherichia coli α-hemolysin and membrane microdomains in the oligomerization process. J. Biol. Chem. 284, 25199–25210 10.1074/jbc.M109.009365 PubMed DOI PMC
Greene N. P., Crow A., Hughes C., and Koronakis V. (2015) Structure of a bacterial toxin-activating acyltransferase. Proc. Natl. Acad. Sci. U.S.A. 112, E3058–E3066 10.1073/pnas.1503832112 PubMed DOI PMC
Gygi D., Nicolet J., Frey J., Cross M., Koronakis V., and Hughes C. (1990) Isolation of the Actinobacillus pleuropneumoniae haemolysin gene and the activation and secretion of the prohaemolysin by the HlyC, HlyB and HlyD proteins of Escherichia coli. Mol. Microbiol. 4, 123–128 10.1111/j.1365-2958.1990.tb02021.x PubMed DOI
Forestier C., and Welch R. A. (1990) Nonreciprocal complementation of the hlyC and lktC genes of the Escherichia coli hemolysin and Pasteurella haemolytica leukotoxin determinants. Infect. Immun. 58, 828–832 10.1128/IAI.58.3.828-832.1990 PubMed DOI PMC
Westrop G., Hormozi K., da Costa N., Parton R., and Coote J. (1997) Structure-function studies of the adenylate cyclase toxin of Bordetella pertussis and the leukotoxin of Pasteurella haemolytica by heterologous C protein activation and construction of hybrid proteins. J. Bacteriol. 179, 871–879 10.1128/jb.179.3.871-879.1997 PubMed DOI PMC
Osicka R., Osicková A., Basar T., Guermonprez P., Rojas M., Leclerc C., and Sebo P. (2000) Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 68, 247–256 10.1128/iai.68.1.247-256.2000 PubMed DOI PMC
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., and Leclerc C. (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the αMβ2 integrin (CD11b/CD18). J. Exp. Med. 193, 1035–1044 10.1084/jem.193.9.1035 PubMed DOI PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., and Sebo P. (2015) Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife 4, e10766 10.7554/eLife.10766 PubMed DOI PMC
Stanley P., Koronakis V., Hardie K., and Hughes C. (1996) Independent interaction of the acyltransferase HlyC with two maturation domains of the Escherichia coli toxin HlyA. Mol. Microbiol. 20, 813–822 10.1111/j.1365-2958.1996.tb02519.x PubMed DOI
Grant R. P., and Hoofnagle A. N. (2014) From lost in translation to paradise found: enabling protein biomarker method transfer by mass spectrometry. Clin. Chem. 60, 941–944 10.1373/clinchem.2014.224840 PubMed DOI PMC
Ludwig A., Garcia F., Bauer S., Jarchau T., Benz R., Hoppe J., and Goebel W. (1996) Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. J. Bacteriol. 178, 5422–5430 10.1128/jb.178.18.5422-5430.1996 PubMed DOI PMC
Benz R., Maier E., Ladant D., Ullmann A., and Sebo P. (1994) Adenylate cyclase toxin (CyaA) of Bordetella pertussis: evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 269, 27231–27239 PubMed
Laviña M., Pugsley A. P., and Moreno F. (1986) Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J. Gen. Microbiol. 132, 1685–1693 10.1099/00221287-132-6-1685 PubMed DOI
Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Morova J., Osicka R., Masin J., and Sebo P. (2008) RTX cytotoxins recognize β2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 105, 5355–5360 10.1073/pnas.0711400105 PubMed DOI PMC
Khan F., He M., and Taussig M. J. (2006) Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 10.1021/ac060184l PubMed DOI
Benz R., Janko K., Boos W., and Läuger P. (1978) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta 511, 305–319 10.1016/0005-2736(78)90269-9 PubMed DOI
Nicolai C., and Sachs F. (2013) Solving ion channel kinetics with the QuB software. Biophys. Rev. Lett. 08, 191–211 10.1142/S1793048013300053 DOI
Ladant D. (1988) Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 263, 2612–2618 PubMed
Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., and Sebo P. (2016) Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 6, 29137 10.1038/srep29137 PubMed DOI PMC
Basler M., Masin J., Osicka R., and Sebo P. (2006) Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect. Immun. 74, 2207–2214 10.1128/IAI.74.4.2207-2214.2006 PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Perez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins