Photo-Methionine, Azidohomoalanine and Homopropargylglycine Are Incorporated into Newly Synthesized Proteins at Different Rates and Differentially Affect the Growth and Protein Expression Levels of Auxotrophic and Prototrophic E. coli in Minimal Medium
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-28126S
Czech Science Foundation
1538119
Charles University Grant Agency
SVV 260 691/2023
Ministry of Education
PubMed
37511538
PubMed Central
PMC10380393
DOI
10.3390/ijms241411779
PII: ijms241411779
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, azidohomoalanine, bio-orthogonal amino acid global substitution, homopropargylglycine, non-canonical amino-acid-containing proteins, photo-methionine,
- MeSH
- alanin MeSH
- aminokyseliny metabolismus MeSH
- Escherichia coli * genetika metabolismus MeSH
- methionin * metabolismus MeSH
- proteiny chemie MeSH
- Racemethionin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alanin MeSH
- aminokyseliny MeSH
- azidohomoalanine MeSH Prohlížeč
- homopropargylglycine MeSH Prohlížeč
- methionin * MeSH
- proteiny MeSH
- Racemethionin MeSH
Residue-specific incorporation of non-canonical amino acids (ncAAs) introduces bio-orthogonal functionalities into proteins. As such, this technique is applied in protein characterization and quantification. Here, we studied protein expression with three methionine analogs, namely photo-methionine (pMet), azidohomoalanine (Aha) and homopropargylglycine (Hpg), in prototrophic E. coli BL-21 and auxotrophic E. coli B834 to maximize ncAA content, thereby assessing the effect of ncAAs on bacterial growth and the expression of cytochrome b5 (b5M46), green fluorescence protein (MBP-GFP) and phage shock protein A. In auxotrophic E. coli, ncAA incorporation ranged from 50 to 70% for pMet and reached approximately 50% for Aha, after 26 h expression, with medium and low expression levels of MBP-GFP and b5M46, respectively. In the prototrophic strain, by contrast, the protein expression levels were higher, albeit with a sharp decrease in the ncAA content after the first hours of expression. Similar expression levels and 70-80% incorporation rates were achieved in both bacterial strains with Hpg. Our findings provide guidance for expressing proteins with a high content of ncAAs, highlight pitfalls in determining the levels of methionine replacement by ncAAs by MALDI-TOF mass spectrometry and indicate a possible systematic bias in metabolic labeling techniques using Aha or Hpg.
Zobrazit více v PubMed
Koberova M., Jecmen T., Sulc M., Cerna V., Kizek R., Hudecek J., Stiborova M., Hodek P. Photo-cytochrome b5—A New Tool to Study the Cytochrome P450 Electron-transport Chain. Int. J. Electrochem. Sci. 2013;8:125–134. doi: 10.1016/S1452-3981(23)14007-7. DOI
Piotrowski C., Ihling C.H., Sinz A. Extending the cross-linking/mass spectrometry strategy: Facile incorporation of photo-activatable amino acids into the model protein calmodulin in Escherichia coli cells. Methods. 2015;89:121–127. doi: 10.1016/j.ymeth.2015.02.012. PubMed DOI
Dieterich D.C., Link A.J., Graumann J., Tirrell D.A., Schuman E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT) Proc. Natl. Acad. Sci. USA. 2006;103:9482–9487. doi: 10.1073/pnas.0601637103. PubMed DOI PMC
Hatzenpichler R., Scheller S., Tavormina P.L., Babin B.M., Tirrell D.A., Orphan V.J. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 2014;16:2568–2590. doi: 10.1111/1462-2920.12436. PubMed DOI PMC
Calve S., Witten A.J., Ocken A.R., Kinzer-Ursem T.L. Incorporation of non-canonical amino acids into the developing murine proteome. Sci. Rep. 2016;6:32377. doi: 10.1038/srep32377. PubMed DOI PMC
Leizeaga A., Estrany M., Forn I., Sebastián M. Using Click-Chemistry for Visualizing in Situ Changes of Translational Activity in Planktonic Marine Bacteria. Front. Microbiol. 2017;8:2360. doi: 10.3389/fmicb.2017.02360. PubMed DOI PMC
Tivendale N.D., Fenske R., Duncan O., Millar A.H. In vivo homopropargylglycine incorporation enables sampling, isolation and characterization of nascent proteins from Arabidopsis thaliana. Plant J. 2021;107:1260–1276. doi: 10.1111/tpj.15376. PubMed DOI
Nagasundarapandian S., Merkel L., Budisa N., Govindan R., Ayyadurai N., Sriram S., Yun H., Lee S.-G. Engineering Protein Sequence Composition for Folding Robustness Renders Efficient Noncanonical Amino acid Incorporations. Chembiochem. 2010;11:2521–2524. doi: 10.1002/cbic.201000380. PubMed DOI
Ma Y., Thota B.N.S., Haag R., Budisa N. Dendronylation: Residue-specific chemoselective attachment of oligoglycerol dendrimers on proteins with noncanonical amino acids. Bioorganic Med. Chem. Lett. 2015;25:5247–5249. doi: 10.1016/j.bmcl.2015.09.055. PubMed DOI
Ptáčková R., Ječmen T., Novák P., Hudeček J., Stiborová M., Šulc M. The Application of an Emerging Technique for Protein–Protein Interaction Interface Mapping: The Combination of Photo-Initiated Cross-Linking Protein Nanoprobes with Mass Spectrometry. Int. J. Mol. Sci. 2014;15:9224–9241. doi: 10.3390/ijms15069224. PubMed DOI PMC
Black D.J., Tran Q.-K., Keightley A., Chinawalkar A., McMullin C., Persechini A. Evaluating Calmodulin–Protein Interactions by Rapid Photoactivated Cross-Linking in Live Cells Metabolically Labeled with Photo-Methionine. J. Proteome Res. 2019;18:3780–3791. doi: 10.1021/acs.jproteome.9b00510. PubMed DOI
Ječmen T., Ptáčková R., Kavan D., Cerná V., Hodek P., Stiborová M., Hudeček J., Sulc M. Quantification of interactions between cytochrome P450 2B4 and cytochrome b5 in a functional membrane complex. Neuro Endocrinol. Lett. 2014;35((Suppl. S2)):114–122. PubMed
Kiick K.L., Saxon E., Tirrell D.A., Bertozzi C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA. 2002;99:19–24. doi: 10.1073/pnas.012583299. PubMed DOI PMC
LaRiviere F.J., Wolfson A.D., Uhlenbeck O.C. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science. 2001;294:165–168. doi: 10.1126/science.1064242. PubMed DOI
Bagert J.D., Xie Y.J., Sweredoski M.J., Qi Y., Hess S., Schuman E.M., Tirrell D.A. Quantitative, Time-Resolved Proteomic Analysis by Combining Bioorthogonal Noncanonical Amino Acid Tagging and Pulsed Stable Isotope Labeling by Amino Acids in Cell Culture. Mol. Cell Proteom. 2014;13:1352–1358. doi: 10.1074/mcp.M113.031914. PubMed DOI PMC
Ječmen T., Ptáčková R., Černá V., Dračínská H., Hodek P., Stiborová M., Hudeček J., Šulc M. Photo-initiated crosslinking extends mapping of the protein–protein interface to membrane-embedded portions of cytochromes P450 2B4 and b5. Methods. 2015;89:128–137. doi: 10.1016/j.ymeth.2015.07.015. PubMed DOI
Vlcek A. (Queen Mary University of London, London, UK). Personal communication. 2023.
Sulc M., Jecmen T., Snajdrova R., Novak P., Martinek V., Hodek P., Stiborova M., Hudecek J. Mapping of interaction between cytochrome P450 2B4 and cytochrome b5: The first evidence of two mutual orientations. Neuro Endocrinol. Lett. 2012;33((Suppl. S3)):41–47. PubMed
Brissette J.L., Weiner L., Ripmaster T.L., Model P. Characterization and sequence of the Escherichia coli stress-induced psp operon. J. Mol. Biol. 1991;220:35–48. doi: 10.1016/0022-2836(91)90379-K. PubMed DOI
Steward K.F., Eilers B., Tripet B., Fuchs A., Dorle M., Rawle R., Soriano B., Balasubramanian N., Copié V., Bothner B., et al. Metabolic Implications of Using BioOrthogonal Non-Canonical Amino Acid Tagging (BONCAT) for Tracking Protein Synthesis. Front. Microbiol. 2020;11:197. doi: 10.3389/fmicb.2020.00197. PubMed DOI PMC
Saleh A.M., Wilding K.M., Calve S., Bundy B.C., Kinzer-Ursem T.L. Non-canonical amino acid labeling in proteomics and biotechnology. J. Biol. Eng. 2019;13:43. doi: 10.1186/s13036-019-0166-3. PubMed DOI PMC
Beatty K.E., Liu J.C., Xie F., Dieterich D.C., Schuman E.M., Wang Q., Tirrell D.A. Fluorescence Visualization of Newly Synthesized Proteins in Mammalian Cells. Angew. Chem. Int. Ed. 2006;45:7364–7367. doi: 10.1002/anie.200602114. PubMed DOI
Landor L.A.I., Bratbak G., Larsen A., Tjendra J., Våge S. Differential toxicity of bioorthogonal non-canonical amino acids (BONCAT) in Escherichia coli. J. Microbiol. Methods. 2023;206:106679. doi: 10.1016/j.mimet.2023.106679. PubMed DOI
Kotrbová V., Aimová D., Ingr M., Bořek-Dohalská L., Martínek V., Stiborová M. Preparation of a biologically active apo-cytochrome b5 via heterologous expression in Escherichia coli. Protein Expr. Purif. 2009;66:203–209. doi: 10.1016/j.pep.2009.03.011. PubMed DOI
Sprouffske K., Wagner A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 2016;17:172. doi: 10.1186/s12859-016-1016-7. PubMed DOI PMC
Haladová K., Mrázek H., Ječmen T., Halada P., Man P., Novák P., Chmelík J., Obšil T., Šulc M. The combination of hydrogen/deuterium exchange or chemical cross-linking techniques with mass spectrometry: Mapping of human 14-3-3ζ homodimer interface. J. Struct. Biol. 2012;179:10–17. doi: 10.1016/j.jsb.2012.04.016. PubMed DOI
Peri S., Steen H., Pandey A. GPMAW—A software tool for analyzing proteins and peptides. Trends Biochem. Sci. 2001;26:687–689. doi: 10.1016/S0968-0004(01)01954-5. PubMed DOI
Sommerer N., Centeno D., Rossignol M. Peptide Mass Fingerprinting: Identification of Proteins by MALDI-TOF. In: Thiellement H., Zivy M., Damerval C., Méchin V., editors. Plant Proteomics. Methods in Molecular Biology. Volume 355. Humana Press; Totowa, NJ, USA: 2007. pp. 219–234. PubMed DOI