The application of an emerging technique for protein-protein interaction interface mapping: the combination of photo-initiated cross-linking protein nanoprobes with mass spectrometry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24865487
PubMed Central
PMC4100091
DOI
10.3390/ijms15069224
PII: ijms15069224
Knihovny.cz E-zdroje
- MeSH
- fotochemické procesy MeSH
- lidé MeSH
- mapování interakce mezi proteiny metody MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- proteiny 14-3-3 chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny 14-3-3 MeSH
Protein-protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8-Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure.
Zobrazit více v PubMed
Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev. 2006;25:663–682. doi: 10.1002/mas.20082. PubMed DOI
Suchanek M., Radzikowska A., Thiele C. Photo-leucine and photo-methionine allow identification of protein–protein interactions. Nat. Methods. 2005;2:261–267. doi: 10.1038/nmeth752. PubMed DOI
Kalkhof S., Ihling C., Mechtler K., Sinz A. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: Application to a calmodulin/target peptide complex. Anal. Chem. 2005;77:495–503. doi: 10.1021/ac0487294. PubMed DOI
Jones D.H., Ley S., Aitken A. Isoforms of 14-3-3 protein can form homo- and hetero-dimers in vivo and in vitro: Implications for function as adapter proteins. FEBS Lett. 1995;368:55–58. doi: 10.1016/0014-5793(95)00598-4. PubMed DOI
Gu Y.M., Jin Y.H., Choi J.K., Baek K.H., Yeo C.Y., Lee K.Y. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon. FEBS Lett. 2006;580:305–310. doi: 10.1016/j.febslet.2005.12.024. PubMed DOI
Gardino A.K., Smerdon S.J., Yaffe M.B. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: A comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 2006;16:173–182. doi: 10.1016/j.semcancer.2006.03.007. PubMed DOI
Haladová K., Mrázek H., Ječmen T., Halada P., Man P., Novák P., Chmelík J., Obšil T., Šulc M. The combination of hydrogen/deuterium exchange or chemical cross-linking techniques with mass spectrometry: Mapping of human 14-3-3ζ homodimer interface. J. Struct. Biol. 2012;179:10–17. doi: 10.1016/j.jsb.2012.04.016. PubMed DOI
Woodcock J.M., Murphy J., Stomski F.C., Berndt M.C., Lopez A.F. The dimeric versus monomeric status of 14-3-3ζ is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem. 2003;178:36323–36327. PubMed
Ma Y., Pitson S., Hercus T., Murphy J., Lopez A., Woodcock J. Sphingosine activates protein kinase A type II by a novel cAMP-independent mechanism. J. Biol. Chem. 2005;280:26011–26017. doi: 10.1074/jbc.M409081200. PubMed DOI
UniProtKB Database. [(accessed on 12 May 2014)]. Available online: http://www.uniprot.org/uniprot/P63104.
Aitken A., Baxter H., Dubois T., Clokie S., Mackie S., Mitchell K., Peden A., Zemlickova E. Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem. Soc. Trans. 2002;30:351–360. PubMed
Yang X., Lee W.H., Sobott F., Papagrigoriou E., Robinson C.V., Grossmann J.G, Sundström M., Doyle D.A., Elkins J.M. Structural basis for protein–protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA. 2006;103:17237–17242. doi: 10.1073/pnas.0605779103. PubMed DOI PMC
Zhao J., Du Y., Horton J.R., Upadhyay A.K., Lou B., Bai Y., Zhang X., Du L., Li M., Wang B., et al. Discovery and structural characterization of a small molecule 14-3-3 protein–protein interaction inhibitor. Proc. Natl. Acad. Sci. USA. 2011;108:16212–16216. doi: 10.1073/pnas.1100012108. PubMed DOI PMC
Martin H., Patel Y., Jones D., Howell S., Robinson K., Aitken A. Antibodies against the major brain isoforms of 14-3-3 protein. An antibody specific for the N-acetylated amino-terminus of a protein. FEBS Lett. 1993;331:296–303. doi: 10.1016/0014-5793(93)80356-Y. PubMed DOI
Fuller B., Stevens S.M., Jr., Sehnke P.C., Ferl R.J. Proteomic analysis of the 14-3-3 family in Arabidopsis. Proteomics. 2006;6:3050–3059. doi: 10.1002/pmic.200500729. PubMed DOI
Kouzarides T. Acetylation: A regulatory modification to rival phosphorylation? EMBO J. 2000;19:1176–1179. doi: 10.1093/emboj/19.6.1176. PubMed DOI PMC
Powell D.W., Rane M.J., Joughin B.A., Kalmukova R., Hong J.H., Tidor B., Dean W.L., Pierce W.M., Klein J.B., Yaffe M.B., et al. Proteomic identification of 14-3-3ζ as a mitogen-activated protein kinase-activated protein kinase 2 substrate: Role in dimer formation and ligand binding. Mol. Cell Biol. 2003;23:5376–5387. doi: 10.1128/MCB.23.15.5376-5387.2003. PubMed DOI PMC
Obsilova V., Herman P., Vecer J., Sulc M., Teisinger J., Obsil T. 14-3-3ζ C-Terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 2004;279:4531–4540. doi: 10.1074/jbc.M306939200. PubMed DOI
Koberova M., Jecmen T., Sulc M., Cerna V., Kizek R., Hudecek J., Stiborova M., Hodek P. Photo-cytochrome b5—A new tool to study the cytochrome P450 electron-transport chain. Int. J. Electrochem. Sci. 2013;8:125–134.
Smith J.A. Analysis of proteins. In: Ausubel F.M., editor. Short Protocols in Molecular Biology. John Wiley & Sons Inc.; Hoboken, NJ, USA: 1995.
Sulc M., Hodek P., Stiborova M. The binding affinity of carcinogenic N-nitrosodimethylamine and N-nitrosomethylaniline to cytochromes P450 2B4, 2E1 and 3A6 does not dictate the rate of their enzymatic N-demethylation. Gen. Physiol. Biophys. 2010;29:175–185. doi: 10.4149/gpb_2010_02_175. PubMed DOI
Wiechelman K.J., Braun R.D., Fitzpatric J.D. Investigation of the bicinchoninic acid protein assay identification of the groups resposible for color formation. Anal. Biochem. 1988;17:231–237. doi: 10.1016/0003-2697(88)90383-1. PubMed DOI
Sulc M., Jecmen T., Snajdrova R., Novak P., Martinek V., Hodek P., Stiborova M., Hudecek J. Mapping of interaction between cytochrome P450 2B4 and cytochrome b5: The first evidence of two mutual orientations. Neuro Endocrinol. Lett. 2012;33:41–47. PubMed
Schwieters C.D., Kuszewski J.J., Tjandra N., Clore G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Res. 2003;160:66–74. PubMed
Schwieters C.D., Kuszewski J.J., Clore G.M. Using Xplor-NIH for NMR molecular structure determination. Progr. NMR Spectrosc. 2006;48:47–62. doi: 10.1016/j.pnmrs.2005.10.001. DOI
Clore G.M., Schwieters C.D. Docking of protein–protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J. Am. Chem. Soc. 2003;125:2902–2912. doi: 10.1021/ja028893d. PubMed DOI
Koradi R., Billeter M., Wüthrich K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 1996;14:51–55. doi: 10.1016/0263-7855(96)00009-4. PubMed DOI