Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16552051
PubMed Central
PMC1418931
DOI
10.1128/iai.74.4.2207-2214.2006
PII: 74/4/2207
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- adenylátcyklasový toxin toxicita MeSH
- AMP cyklický metabolismus MeSH
- antigeny CD11b metabolismus MeSH
- antigeny CD18 metabolismus MeSH
- Bordetella pertussis enzymologie imunologie MeSH
- buněčná smrt imunologie MeSH
- buněčné linie MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- cytotoxicita imunologická * MeSH
- erytrocyty metabolismus MeSH
- křečci praví MeSH
- monocyty enzymologie imunologie MeSH
- myši MeSH
- ovce MeSH
- permeabilita buněčné membrány imunologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- adenylátcyklasový toxin MeSH
- AMP cyklický MeSH
- antigeny CD11b MeSH
- antigeny CD18 MeSH
Bordetella adenylate cyclase (AC) toxin-hemolysin (CyaA) targets myeloid phagocytes expressing the alphaMbeta2 integrin (CD11b/CD18) and delivers into their cytosol an AC enzyme that converts ATP into cyclic AMP (cAMP). In parallel, CyaA acts as a hemolysin, forming small membrane pores. Using specific mutations, we dissected the contributions of the two activities to cytolytic potency of CyaA on J774A.1 murine monocytes. The capacity of AC to penetrate cells and deplete cytosolic ATP was essential for promoting lysis and the enzymatically inactive but fully hemolytic CyaA-AC- toxoid exhibited a 15-fold-lower cytolytic capacity on J774A.1 cells than intact CyaA. Moreover, a two- or fourfold drop of specific hemolytic activity of the CyaA-E570Q and CyaA-E581P mutants was overpowered by an intact capacity to dissipate cytosolic ATP into cAMP, allowing the less hemolytic proteins to promote lysis of J774A.1 cells as efficiently as intact CyaA. However, an increased hemolytic activity, due to lysine substitutions of glutamates 509, 516, and 581 in the pore-forming domain, conferred on AC- toxoids a correspondingly enhanced cytolytic potency. Moreover, a threefold increase in hemolytic activity could override a fourfold drop in capacity to convert cellular ATP to cAMP, conferring on the CyaA-E581K construct an overall twofold increased cytolytic potency. Hence, although appearing auxiliary in cytolytic action of the toxin on nucleated cells, the pore-forming activity can synergize with ATP-depleting activity of the cell-invasive AC enzyme and complement its action toward maximal cytotoxicity.
Zobrazit více v PubMed
Bachelet, M., M. J. Richard, D. Francois, and B. S. Polla. 2002. Mitochondrial alterations precede Bordetella pertussis-induced apoptosis. FEMS Immunol. Med. Microbiol. 32:125-131. PubMed
Barry, E. M., A. A. Weiss, I. E. Ehrmann, M. C. Gray, E. L. Hewlett, and M. S. Goodwin. 1991. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J. Bacteriol. 173:720-726. PubMed PMC
Basar, T., V. Havlicek, S. Bezouskova, M. Hackett, and P. Sebo. 2001. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 276:348-354. PubMed
Basar, T., V. Havlicek, S. Bezouskova, P. Halada, M. Hackett, and P. Sebo. 1999. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase toxin is crucial for toxin function independently of its acylation status. J. Biol. Chem. 274:10777-10783. PubMed
Baumann, U., S. Wu, K. M. Flaherty, and D. B. McKay. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12:3357-3364. PubMed PMC
Bellalou, J., H. Sakamoto, D. Ladant, C. Geoffroy, and A. Ullmann. 1990. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 58:3242-3247. PubMed PMC
Benz, R., E. Maier, D. Ladant, A. Ullmann, and P. Sebo. 1994. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 269:27231-27239. PubMed
Betsou, F., P. Sěbo, and N. Guiso. 1993. CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 61:3583-3589. PubMed PMC
Boyd, A. P., P. J. Ross, H. Conroy, N. Mahon, E. C. Lavelle, and K. H. Mills. 2005. Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J. Immunol. 175:730-873. PubMed
Confer, D. L., and J. W. Eaton. 1982. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217:948-950. PubMed
Ehrmann, I. E., M. C. Gray, V. M. Gordon, L. S. Gray, and E. L. Hewlett. 1991. Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 278:79-83. PubMed
El-Azami-El-Idrissi, M., C. Bauche, J. Loucka, R. Osicka, P. Sebo, D. Ladant, and C. Leclerc. 2003. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 278:38514-38521. PubMed
Friedman, R. L., R. L. Fiederlein, L. Glasser, and J. N. Galgiani. 1987. Bordetella pertussis adenylate cyclase: effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect. Immun. 55:135-140. PubMed PMC
Gentile, F., A. Raptis, L. G. Knipling, and J. Wolff. 1988. Bordetella pertussis adenylate cyclase: penetration into host cells. Eur. J. Biochem. 175:447-453. PubMed
Glaser, P., D. Ladant, O. Sezer, F. Pichot, A. Ullmann, and A. Danchin. 1988. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol. Microbiol. 2:19-30. PubMed
Glaser, P., H. Sakamoto, J. Bellalou, A. Ullmann, and A. Danchin. 1988. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 7:3997-4004. PubMed PMC
Goodwin, M. S. M., and A. A. Weiss. 1990. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect. Immun. 58:3445-3447. PubMed PMC
Gray, M. C., G. M. Donato, F. R. Jones, T. Kim, and E. L. Hewlett. 2004. Newly secreted adenylate cyclase toxin is responsible for intoxication of target cells by Bordetella pertussis. Mol. Microbiol. 53:1709-1719. PubMed
Gross, M. K., D. C. Au, A. L. Smith, and D. R. Storm. 1992. Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence. Proc. Natl. Acad. Sci. USA 89:4898-4902. PubMed PMC
Gueirard, P., A. Druilhe, M. Pretolani, and N. Guiso. 1998. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect. Immun. 66:1718-1725. PubMed PMC
Guermonprez, P., N. Khelef, E. Blouin, P. Rieu, P. Ricciardi-Castagnoli, N. Guiso, D. Ladant, and C. Leclerc. 2001. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J. Exp. Med. 193:1035-1044. PubMed PMC
Guermonprez, P., D. Ladant, G. Karimova, A. Ullmann, and C. Leclerc. 1999. Direct delivery of the Bordetella pertussis adenylate cyclase toxin to the MHC class I antigen presentation pathway. J. Immunol. 162:1910-1916. PubMed
Hackett, M., L. Guo, J. Shabanowitz, D. F. Hunt, and E. L. Hewlett. 1994. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266:433-435. PubMed
Hackett, M., C. B. Walker, L. Guo, M. C. Gray, C. S. Van, A. Ullmann, J. Shabanowitz, D. F. Hunt, E. L. Hewlett, and P. Sebo. 1995. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 270:20250-20253. PubMed
Hanski, E. 1989. Invasive adenylate cyclase toxin of Bordetella pertussis. Trends Biochem. Sci. 14:459-463. PubMed
Hanski, E., and Z. Farfel. 1985. Bordetella pertussis invasive adenylate cyclase: partial resolution and properties of its cellular penetration. J. Biol. Chem. 260:5526-5532. PubMed
Havlicek, V., L. Higgins, W. Chen, P. Halada, P. Sebo, H. Sakamoto, and M. Hackett. 2001. Mass spectrometric analysis of recombinant adenylate cyclase toxin from Bordetella pertussis strain 18323/pHSP9. J. Mass Spectrom. 36:384-391. PubMed
Hewlett, E., and J. Wolff. 1976. Soluble adenylate cyclase from the culture medium of Bordetella pertussis: purification and characterization. J. Bacteriol. 127:890-898. PubMed PMC
Hewlett, E. L., G. M. Donato, and M. C. Gray. 2006. Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! Mol. Microbiol. 59:447-459. PubMed
Hewlett, E. L., L. Gray, M. Allietta, I. E. Ehrmann, V. M. Gordon, and M. C. Gray. 1991. Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity. J. Biol. Chem. 266:17503-17508. PubMed
Hewlett, E. L., D. L. Smith, G. A. Myers, R. D. Pearson, and H. D. Kay. 1983. In vitro inhibition of human natural killer (NK) cell cytotoxicity by Bordetella cyclase and pertussis toxin. Clin. Res. 31:365A.
Hewlett, E. L., M. A. Urban, C. R. Manclark, and J. Wolff. 1976. Extracytoplasmic adenylate cyclase of Bordetella pertussis. Proc. Natl. Acad. Sci. USA 73:1926-1930. PubMed PMC
Ingalls, R. R., M. A. Arnaout, R. L. Delude, S. Flaherty, R. Savedra, Jr., and D. T. Golenbock. 1998. The CD11/CD18 integrins: characterization of three novel LPS signaling receptors. Prog. Clin. Biol. Res. 397:107-117. PubMed
Karimova, G., C. Fayolle, S. Gmira, A. Ullmann, C. Leclerc, and D. Ladant. 1998. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: implication for the in vivo delivery of CD8(+) T cell epitopes into antigen-presenting cells. Proc. Natl. Acad. Sci. USA 95:12532-12537. PubMed PMC
Karimova, G., J. Pidoux, A. Ullmann, and D. Ladant. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95:5752-5756. PubMed PMC
Khelef, N., and N. Guiso. 1995. Induction of macrophage apoptosis by Bordetella pertussis adenylate cyclase-hemolysin. FEMS Microbiol. Lett. 134:27-32. PubMed
Khelef, N., H. Sakamoto, and N. Guiso. 1992. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb. Pathog. 12:227-235. PubMed
Khelef, N., A. Zychlinsky, and N. Guiso. 1993. Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect. Immun. 61:4064-4071. PubMed PMC
Knapp, O., E. Maier, G. Polleichtner, J. Masin, P. Sebo, and R. Benz. 2003. Channel formation in model membranes by the adenylate cyclase toxin of Bordetella pertussis: effect of calcium. Biochemistry 42:8077-8084. PubMed
Koronakis, V., C. Andersen, and C. Hughes. 2001. Channel-tunnels. Curr. Opin. Struct. Biol. 11:403-407. PubMed
Ladant, D., P. Glaser, and A. Ullmann. 1992. Insertional mutagenesis of Bordetella pertussis adenylate cyclase. J. Biol. Chem. 267:2244-2250. PubMed
Ladant, D., and A. Ullmann. 1999. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7:172-176. PubMed
Masin, J., M. Basler, O. Knapp, M. El-Azami-El-Idrissi, E. Maier, I. Konopasek, R. Benz, C. Leclerc, and P. Sebo. 2005. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44:12759-12766. PubMed
Njamkepo, E., F. Pinot, D. Francois, N. Guiso, B. S. Polla, and M. Bachelet. 2000. Adaptive responses of human monocytes infected by Bordetella pertussis: the role of adenylate cyclase hemolysin. J. Cell Physiol. 183:91-99. PubMed
Osička, R., A. Osičkova, T. Basar, P. Guermonprez, M. Rojas, C. Leclerc, and P. Sebo. 2000. Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 68:247-256. PubMed PMC
Osickova, A., R. Osicka, E. Maier, R. Benz, and P. Sebo. 1999. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 274:37644-37650. PubMed
Pearson, R. D., P. Symes, M. Conboy, A. A. Weiss, and E. L. Hewlett. 1987. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J. Immunol. 139:2749-2754. PubMed
Rogel, A., R. Meller, and E. Hanski. 1991. Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J. Biol. Chem. 266:3154-3161. PubMed
Rogel, A., J. E. Schultz, R. M. Brownlie, J. G. Coote, R. Parton, and E. Hanski. 1989. Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. EMBO J. 8:2755-2760. PubMed PMC
Rose, T., P. Sebo, J. Bellalou, and D. Ladant. 1995. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J. Biol. Chem. 270:26370-26376. PubMed
Schlecht, G., J. Loucka, H. Najar, P. Sebo, and C. Leclerc. 2004. Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J. Immunol. 173:6089-6097. PubMed
Sebo, P., P. Glaser, H. Sakamoto, and A. Ullmann. 1991. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene 104:19-24. PubMed
Szabo, G., M. C. Gray, and E. L. Hewlett. 1994. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium and polarity-dependent manner. J. Biol. Chem. 269:22496-22499. PubMed
Vojtova, J., J. Kamanova, and P. Sebo. 4. January 2006. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr. Opin. Microbiol. [Epub ahead of print.] PubMed
Weingart, C. L., and A. A. Weiss. 2000. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect. Immun. 68:1735-1739. PubMed PMC
Weiss, A. A., E. L. Hewlett, G. A. Myers, and S. Falkow. 1984. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J. Infect. Dis. 150:219-222. PubMed
Wolff, J., G. H. Cook, A. R. Goldhammer, and S. A. Berkowitz. 1980. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. USA 77:3841-3844. PubMed PMC
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins
Phospholipase A activity of adenylate cyclase toxin?
Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells
General and molecular microbiology and microbial genetics in the IM CAS