Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin

. 2019 Apr 08 ; 9 (1) : 5758. [epub] 20190408

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30962483
Odkazy

PubMed 30962483
PubMed Central PMC6453906
DOI 10.1038/s41598-019-42200-2
PII: 10.1038/s41598-019-42200-2
Knihovny.cz E-zdroje

The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of pathogenic Bordetellae delivers its adenylyl cyclase (AC) enzyme domain into the cytosol of host cells and catalyzes uncontrolled conversion of cellular ATP to cAMP. In parallel, the toxin forms small cation-selective pores that permeabilize target cell membrane and account for the hemolytic activity of CyaA on erythrocytes. The pore-forming domain of CyaA is predicted to consist of five transmembrane α-helices, of which the helices I, III, IV and V have previously been characterized. We examined here the α-helix II that is predicted to form between residues 529 to 549. Substitution of the glycine 531 residue by a proline selectively reduced the hemolytic capacity but did not affect the AC translocating activity of the CyaA-G531P toxin. In contrast, CyaA toxins with alanine 538 or 546 replaced by diverse residues were selectively impaired in the capacity to translocate the AC domain across cell membrane but remained fully hemolytic. Such toxins, however, formed pores in planar asolectin bilayer membranes with a very low frequency and with at least two different conducting states. The helix-breaking substitution of alanine 538 by a proline residue abolished the voltage-activated increase of membrane activity of CyaA in asolectin bilayers. These results reveal that the predicted α-helix comprising the residues 529 to 549 plays a key role in CyaA penetration into the target plasma membrane and pore-forming activity of the toxin.

Zobrazit více v PubMed

Bumba L, et al. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI

Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. doi: 10.1126/science.7939682. PubMed DOI

Hackett M, et al. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem. 1995;270:20250–20253. doi: 10.1074/jbc.270.35.20250. PubMed DOI

Linhartova I, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC

Masin J, Osicka R, Bumba L, Sebo P. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC

Masin J, et al. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci Rep. 2016;6:29137. doi: 10.1038/srep29137. PubMed DOI PMC

Subrini O, et al. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J Biol Chem. 2013;288:32585–32598. doi: 10.1074/jbc.M113.508838. PubMed DOI PMC

Basler M, Masin J, Osicka R, Sebo P. Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun. 2006;74:2207–2214. doi: 10.1128/IAI.74.4.2207-2214.2006. PubMed DOI PMC

Hewlett EL, Donato GM, Gray MC. Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! Mol Microbiol. 2006;59:447–459. doi: 10.1111/j.1365-2958.2005.04958.x. PubMed DOI

Otero AS, Yi XB, Gray MC, Szabo G, Hewlett EL. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem. 1995;270:9695–9697. doi: 10.1074/jbc.270.17.9695. PubMed DOI

Veneziano R, et al. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer. Proc Natl Acad Sci USA. 2013;110:20473–20478. doi: 10.1073/pnas.1312975110. PubMed DOI PMC

Gordon VM, Leppla SH, Hewlett EL. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun. 1988;56:1066–1069. PubMed PMC

Novak, J. et al. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel)9, 10.3390/toxins9100300 (2017). PubMed PMC

Wolff J, Cook GH, Goldhammer AR, Berkowitz SA. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA. 1980;77:3841–3844. doi: 10.1073/pnas.77.7.3841. PubMed DOI PMC

Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim Biophys Acta. 2016;1858:526–537. doi: 10.1016/j.bbamem.2015.10.025. PubMed DOI

Benz R, Maier E, Ladant D, Ullmann A, Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem. 1994;269:27231–27239. PubMed

Ehrmann IE, Gray MC, Gordon VM, Gray LS, Hewlett EL. Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 1991;278:79–83. doi: 10.1016/0014-5793(91)80088-K. PubMed DOI

Fiser R, et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8:e1002580. doi: 10.1371/journal.ppat.1002580. PubMed DOI PMC

Gray M, Szabo G, Otero AS, Gray L, Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem. 1998;273:18260–18267. doi: 10.1074/jbc.273.29.18260. PubMed DOI

Vojtova-Vodolanova J, et al. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. Faseb J. 2009;23:2831–2843. doi: 10.1096/fj.09-131250. PubMed DOI

Wald T, et al. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem. 2014;450:57–62. doi: 10.1016/j.ab.2013.10.039. PubMed DOI

Basler M, et al. Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J Biol Chem. 2007;282:12419–12429. doi: 10.1074/jbc.M611226200. PubMed DOI

Gray MC, et al. Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis. J Bacteriol. 2001;183:5904–5910. doi: 10.1128/JB.183.20.5904-5910.2001. PubMed DOI PMC

Osickova A, et al. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol. 2010;75:1550–1562. doi: 10.1111/j.1365-2958.2010.07077.x. PubMed DOI

Osickova A, Osicka R, Maier E, Benz R, Sebo P. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem. 1999;274:37644–37650. PubMed

Guermonprez P, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J Exp Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC

Osicka R, et al. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC

Hasan S, et al. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. doi: 10.1016/j.febslet.2014.12.023. PubMed DOI

Morova, J., Osicka, R., Masin, J. & Sebo, P. RTX cytotoxins recognize {beta}2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A (2008). PubMed PMC

Bellalou J, Sakamoto H, Ladant D, Geoffroy C, Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun. 1990;58:3242–3247. PubMed PMC

Eby JC, et al. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem. 2010;285:10662–10670. doi: 10.1074/jbc.M109.089219. PubMed DOI PMC

Martin C, et al. Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family. J Bacteriol. 2004;186:3760–3765. doi: 10.1128/JB.186.12.3760-3765.2004. PubMed DOI PMC

Masin J, Konopasek I, Svobodova J, Sebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim Biophys Acta. 2004;1660:144–154. doi: 10.1016/j.bbamem.2003.11.008. PubMed DOI

Hasan, S. et al. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect Immun86, 10.1128/IAI.00445-17 (2018). PubMed PMC

Guo Q, et al. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. Embo J. 2005;24:3190–3201. doi: 10.1038/sj.emboj.7600800. PubMed DOI PMC

Cannella SE, et al. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci Rep. 2017;7:42065. doi: 10.1038/srep42065. PubMed DOI PMC

Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol179, 125–142, 0022-2836(84)90309-7 [pii] (1984). PubMed

Masin J, et al. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci Rep. 2017;7:9330. doi: 10.1038/s41598-017-09575-6. PubMed DOI PMC

Powthongchin B, Angsuthanasombat C. Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment. Arch Microbiol. 2009;191:1–9. doi: 10.1007/s00203-008-0421-3. PubMed DOI

Juntapremjit S, et al. Functional importance of the Gly cluster in transmembrane helix 2 of the Bordetella pertussis CyaA-hemolysin: Implications for toxin oligomerization and pore formation. Toxicon. 2015;106:14–19. doi: 10.1016/j.toxicon.2015.09.006. PubMed DOI

Knapp O, Maier E, Masin J, Sebo P, Benz R. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: role of voltage and pH. Biochim Biophys Acta. 2008;1778:260–269. doi: 10.1016/j.bbamem.2007.09.026. PubMed DOI

Tokumasu F, Ostera GR, Amaratunga C, Fairhurst RM. Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection. Exp Parasitol. 2012;131:245–251. doi: 10.1016/j.exppara.2012.03.005. PubMed DOI PMC

Rost B, Fariselli P, Casadio R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 1996;5:1704–1718. doi: 10.1002/pro.5560050824. PubMed DOI PMC

Chen CP, Kernytsky A, Rost B. Transmembrane helix predictions revisited. Protein Sci. 2002;11:2774–2791. doi: 10.1110/ps.0214502. PubMed DOI PMC

Masin J, et al. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect Immun. 2013;81:4571–4582. doi: 10.1128/IAI.00711-13. PubMed DOI PMC

Szabo G, Gray MC, Hewlett EL. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J Biol Chem. 1994;269:22496–22499. PubMed

Scholfield CR. Composition of Soybean Lecithin. Journal of the American Oil Chemists´Society. 1981;58:889–892. doi: 10.1007/BF02659652. DOI

Abidi SL. Chromatographic analysis of plant sterols in foods and vegetable oils. J Chromatogr A. 2001;935:173–201. doi: 10.1016/S0021-9673(01)00946-3. PubMed DOI

Nelson GJ. Studies on the lipids of sheep red blood cells. I. Lipid composition in low and high potassium red cells. Lipids. 1967;2:64–71. doi: 10.1007/BF02532003. PubMed DOI

Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. Biochim Biophys Acta. 2015;1848:1886–1896. doi: 10.1016/j.bbamem.2015.03.011. PubMed DOI

Epand RM. Detection of hexagonal phase forming propensity in phospholipid bilayers. Biophys J. 1993;64:290–291. doi: 10.1016/S0006-3495(93)81353-5. PubMed DOI PMC

Bumba L, Masin J, Fiser R, Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901. doi: 10.1371/journal.ppat.1000901. PubMed DOI PMC

Vojtova J, Kofronova O, Sebo P, Benada O. Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech. 2006;69:119–129. doi: 10.1002/jemt.20277. PubMed DOI

Prangkio P, Juntapremjit S, Koehler M, Hinterdorfer P, Angsuthanasombat C. Contributions of the Hydrophobic Helix 2 of the Bordetella pertussis CyaA-hemolysin to Membrane Permeabilization. Protein Pept Lett. 2018;25:236–243. doi: 10.2174/0929866525666171201120456. PubMed DOI

Osicka R, et al. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC

Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem. 1988;263:2612–2618. PubMed

Sigworth FJ, Sine SM. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987;52:1047–1054. doi: 10.1016/S0006-3495(87)83298-8. PubMed DOI PMC

Rouser G, Fkeischer S, Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–496. doi: 10.1007/BF02531316. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...