Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32393579
PubMed Central
PMC7363143
DOI
10.1074/jbc.ra120.013630
PII: S0021-9258(17)48958-7
Knihovny.cz E-zdroje
- Klíčová slova
- AC domain translocation, AC translocon, Bordetella pertussis, CyaA, Escherichia coli (E. coli), HlyA, RTX toxin, acylation, acyltransferase, bacterial toxin, complement receptor 3 (CR3,), fatty acid, fatty acyl, integrin, protein acylation, protein translocation,
- MeSH
- adenylátcyklasový toxin metabolismus MeSH
- antigen-1 spojený s lymfocytární funkcí metabolismus MeSH
- Bordetella * MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- cytosol metabolismus MeSH
- Jurkat buňky MeSH
- lidé MeSH
- makrofágový antigen 1 metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- THP-1 buňky MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- antigen-1 spojený s lymfocytární funkcí MeSH
- makrofágový antigen 1 MeSH
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.
Faculty of Science Charles University Prague Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Linhartová I., Bumba L., Mašín J., Basler M., Osička R., Kamanova J., Prochazkova K., Adkins I., Hejnová-Holubová J., Sadilková L., Morová J., and Sebo P. (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 10.1111/j.1574-6976.2010.00231.x PubMed DOI PMC
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., and Osicka R. (2017) Structure-function relationships underlying the capacity of PubMed DOI PMC
Sebo P., Osicka R., and Masin J. (2014) Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Exp. Rev. Vaccines 13, 1215–1227 10.1586/14760584.2014.944900 PubMed DOI
Vojtova J., Kamanova J., and Sebo P. (2006) PubMed DOI
Gordon V. M., Leppla S. H., and Hewlett E. L. (1988) Inhibitors of receptor-mediated endocytosis block the entry of PubMed DOI PMC
Wolff J., Cook G. H., Goldhammer A. R., and Berkowitz S. A. (1980) Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 77, 3841–3844 10.1073/pnas.77.7.3841 PubMed DOI PMC
Gordon V. M., Young W. W. Jr., Lechler S. M., Gray M. C., Leppla S. H., and Hewlett E. L. (1989) Adenylate cyclase toxins from PubMed
Hanski E. (1989) Invasive adenylate cyclase toxin of PubMed DOI
Morova J., Osicka R., Masin J., and Sebo P. (2008) RTX cytotoxins recognize β2 integrin receptors through PubMed DOI PMC
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., and Leclerc C. (2001) The adenylate cyclase toxin of PubMed DOI PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., and Sebo P. (2015) PubMed DOI PMC
Hasan S., Osickova A., Bumba L., Novák P., Sebo P., and Osicka R. (2015) Interaction of PubMed DOI
Benz R., Maier E., Ladant D., Ullmann A., and Sebo P. (1994) Adenylate cyclase toxin (CyaA) of PubMed
Sakamoto H., Bellalou J., Sebo P., and Ladant D. (1992) PubMed
Szabo G., Gray M. C., and Hewlett E. L. (1994) Adenylate cyclase toxin from PubMed
Gray M., Szabo G., Otero A. S., Gray L., and Hewlett E. (1998) Distinct mechanisms for K+ efflux, intoxication, and hemolysis by PubMed DOI
Wald T., Osickova A., Masin J., Liskova P. M., Petry-Podgorska I., Matousek T., Sebo P., and Osicka R. (2016) Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of PubMed DOI
Bellalou J., Sakamoto H., Ladant D., Geoffroy C., and Ullmann A. (1990) Deletions affecting hemolytic and toxin activities of PubMed DOI PMC
Ehrmann I. E., Gray M. C., Gordon V. M., Gray L. S., and Hewlett E. L. (1991) Hemolytic activity of adenylate cyclase toxin from PubMed DOI
Basler M., Masin J., Osicka R., and Sebo P. (2006) Pore-forming and enzymatic activities of PubMed DOI PMC
Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E. L., Benz R., and Sebo P. (2013) Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins PubMed DOI PMC
Gmira S., Karimova G., and Ladant D. (2001) Characterization of recombinant PubMed DOI
Holubova J., Kamanova J., Jelinek J., Tomala J., Masin J., Kosova M., Stanek O., Bumba L., Michalek J., Kovar M., and Sebo P. (2012) Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the PubMed DOI PMC
Karimova G., Pidoux J., Ullmann A., and Ladant D. (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 5752–5756 10.1073/pnas.95.10.5752 PubMed DOI PMC
Sory M. P., and Cornelis G. R. (1994) Translocation of a hybrid YopE-adenylate cyclase from PubMed DOI
Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., and Sebo P. (2010) Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 75, 1550–1562 10.1111/j.1365-2958.2010.07077.x PubMed DOI
Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., and Sebo P. (2016) Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 6, 29137 10.1038/srep29137 PubMed DOI PMC
Subrini O., Sotomayor-Pérez A. C., Hessel A., Spiaczka-Karst J., Selwa E., Sapay N., Veneziano R., Pansieri J., Chopineau J., Ladant D., and Chenal A. (2013) Characterization of a membrane-active peptide from the PubMed DOI PMC
Voegele A., Subrini O., Sapay N., Ladant D., and Chenal A. (2017) Membrane-active properties of an amphitropic peptide from the CyaA toxin translocation region. Toxins 9, 369 10.3390/toxins9110369 PubMed DOI PMC
Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., and Osicka R. (2007) Segments crucial for membrane translocation and pore-forming activity of PubMed DOI
Juntapremjit S., Thamwiriyasati N., Kurehong C., Prangkio P., Shank L., Powthongchin B., and Angsuthanasombat C. (2015) Functional importance of the Gly cluster in transmembrane helix 2 of the PubMed DOI
Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., Sebo P., and Osicka R. (2017) The conserved tyrosine residue 940 plays a key structural role in membrane interaction of PubMed DOI PMC
Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., and Osicka R. (1999) An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 274, 37644–37650 10.1074/jbc.M611226200 PubMed DOI
Powthongchin B., and Angsuthanasombat C. (2009) Effects on haemolytic activity of single proline substitutions in the PubMed DOI
Prangkio P., Juntapremjit S., Koehler M., Hinterdorfer P., and Angsuthanasombat C. (2018) Contributions of the Hydrophobic Helix 2 of the PubMed DOI
Roderova J., Osickova A., Sukova A., Mikusova G., Fiser R., Sebo P., Osicka R., and Masin J. (2019) Residues 529 to 549 participate in membrane penetration and pore-forming activity of the PubMed DOI PMC
Basar T., Havlíček V., Bezoušková S., Halada P., Hackett M., and Šebo P. (1999) The conserved lysine 860 in the additional fatty-acylation site of PubMed DOI
Hackett M., Guo L., Shabanowitz J., Hunt D. F., and Hewlett E. L. (1994) Internal lysine palmitoylation in adenylate cyclase toxin from PubMed DOI
Hackett M., Walker C. B., Guo L., Gray M. C., Van Cuyk S., Ullmann A., Shabanowitz J., Hunt D. F., Hewlett E. L., and Sebo P. (1995) Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in PubMed DOI
OsičKa R., OsičKová A., Basar T., Guermonprez P., Rojas M., Leclerc C., and Šebo P. (2000) Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by PubMed DOI PMC
Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., Svergun D. I., Barinka C., and Sebo P. (2016) Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell 62, 47–62 10.1016/j.molcel.2016.03.018 PubMed DOI
Rose T., Sebo P., Bellalou J., and Ladant D. (1995) Interaction of calcium with PubMed DOI
Rogel A., and Hanski E. (1992) Distinct steps in the penetration of adenylate cyclase toxin of PubMed
Bumba L., Masin J., Fiser R., and Sebo P. (2010) PubMed DOI PMC
Fiser R., Masin J., Basler M., Krusek J., Spulákova V., Konopásek I., and Sebo P. (2007) Third activity of PubMed DOI
Karst J. C., Barker R., Devi U., Swann M. J., Davi M., Roser S. J., Ladant D., and Chenal A. (2012) Identification of a region that assists membrane insertion and translocation of the catalytic domain of PubMed DOI PMC
González-Bullón D., Uribe K. B., Martín C., and Ostolaza H. (2017) Phospholipase A activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain. Proc. Natl. Acad. Sci. U.S.A. 114, E6784–E6793 10.1073/pnas.1701783114 PubMed DOI PMC
Bumba L., Masin J., Osickova A., Osicka R., and Sebo P. (2018) PubMed DOI PMC
Masin J., Osicka R., Bumba L., and Sebo P. (2018) Phospholipase A activity of adenylate cyclase toxin? Proc. Natl. Acad. Sci. U.S.A. 115, E2489–E2490 10.1073/pnas.1722588115 PubMed DOI PMC
Voegele A., Sadi M., Raoux-Barbot D., Douche T., Matondo M., Ladant D., and Chenal A. (2019) The adenylate cyclase (CyaA) toxin from PubMed DOI PMC
Johnsen N., Hamilton A. D. M., Greve A. S., Christensen M. G., Therkildsen J. R., Wehmöller J., Skals M., and Praetorius H. A. (2019) α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of PubMed DOI
Schwidder M., Heinisch L., and Schmidt H. (2019) Genetics, toxicity, and distribution of enterohemorrhagic PubMed DOI PMC
Ristow L. C., and Welch R. A. (2016) Hemolysin of uropathogenic PubMed DOI
Hyland C., Vuillard L., Hughes C., and Koronakis V. (2001) Membrane interaction of PubMed DOI PMC
Soloaga A., Veiga M. P., García-Segura L. M., Ostolaza H., Brasseur R., and Goñi F. M. (1999) Insertion of PubMed DOI
Issartel J. P., Koronakis V., and Hughes C. (1991) Activation of PubMed DOI
Lim K. B., Walker C. R., Guo L., Pellett S., Shabanowitz J., Hunt D. F., Hewlett E. L., Ludwig A., Goebel W., Welch R. A., and Hackett M. (2000) PubMed DOI
Stanley P., Packman L. C., Koronakis V., and Hughes C. (1994) Fatty acylation of two internal lysine residues required for the toxic activity of PubMed DOI
Cortajarena A. L., Goñi F. M., and Ostolaza H. (2001) Glycophorin as a receptor for PubMed DOI
Lally E. T., Kieba I. R., Sato A., Green C. L., Rosenbloom J., Korostoff J., Wang J. F., Shenker B. J., Ortlepp S., Robinson M. K., and Billings P. C. (1997) RTX toxins recognize a β2 integrin on the surface of human target cells. J. Biol. Chem. 272, 30463–30469 10.1074/jbc.272.48.30463 PubMed DOI
Ristow L. C., Tran V., Schwartz K. J., Pankratz L., Mehle A., Sauer J. D., and Welch R. A. (2019) The extracellular domain of the β2 integrin β subunit (CD18) is sufficient for PubMed PMC
Wiles T. J., and Mulvey M. A. (2013) The RTX pore-forming toxin α-hemolysin of uropathogenic PubMed DOI PMC
Ahmad J. N., Cerny O., Linhartova I., Masin J., Osicka R., and Sebo P. (2016) cAMP signalling of PubMed DOI
Cerny O., Anderson K. E., Stephens L. R., Hawkins P. T., and Sebo P. (2017) cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C Activity. J. Immunol. 198, 1285–1296 10.4049/jimmunol.1601309 PubMed DOI
Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., and Sebo P. (2015) PubMed DOI
Confer D. L., and Eaton J. W. (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217, 948–950 10.1126/science.6287574 PubMed DOI
Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., and Sebo P. (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 181, 5587–5597 10.4049/jimmunol.181.8.5587 PubMed DOI
Pearson R. D., Symes P., Conboy M., Weiss A. A., and Hewlett E. L. (1987) Inhibition of monocyte oxidative responses by PubMed
El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., and Leclerc C. (2003) Interaction of PubMed DOI
Wang X., Gray M. C., Hewlett E. L., and Maynard J. A. (2015) The PubMed DOI PMC
Wang X., Stapleton J. A., Klesmith J. R., Hewlett E. L., Whitehead T. A., and Maynard J. A. (2017) Fine epitope mapping of two antibodies neutralizing the PubMed DOI PMC
Wagner C., Hänsch G. M., Stegmaier S., Denefleh B., Hug F., and Schoels M. (2001) The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent up-regulation and regulatory function. Eur. J. Immunol. 31, 1173–1180 10.1002/1521-4141(200104)31:4<1173::AID-IMMU1173>3.0.CO;2-9 PubMed DOI
Westrop G., Hormozi K., da Costa N., Parton R., and Coote J. (1997) Structure-function studies of the adenylate cyclase toxin of PubMed DOI PMC
Basar T., Havlíček V., Bezoušková S., Hackett M., and Šebo P. (2001) Acylation of lysine 983 is sufficient for toxin activity of PubMed DOI
Rogel A., Schultz J. E., Brownlie R. M., Coote J. G., Parton R., and Hanski E. (1989) PubMed DOI PMC
Soloaga A., Ostolaza H., Goñi F. M., and de la Cruz F. (1996) Purification of PubMed DOI
Karst J. C., Ntsogo Enguene V. Y., Cannella S. E., Subrini O., Hessel A., Debard S., Ladant D., and Chenal A. (2014) Calcium, acylation, and molecular confinement favor folding of PubMed DOI PMC
O'Brien D. P., Cannella S. E., Voegele A., Raoux‐Barbot D., Davi M., Douché T., Matondo M., Brier S., Ladant D., and Chenal A. (2019) Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 33, 10065–10076 10.1096/fj.201802442RR PubMed DOI
Betsou F., Sebo P., and Guiso N. (1993) CyaC-mediated activation is important not only for toxic but also for protective activities of PubMed DOI PMC
Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., Benz R., Leclerc C., and Sebo P. (2005) Acylation of lysine 860 allows tight binding and cytotoxicity of PubMed DOI
Bhakdi S., Greulich S., Muhly M., Eberspächer B., Becker H., Thiele A., and Hugo F. (1989) Potent leukocidal action of PubMed DOI PMC
Bhakdi S., Muhly M., Korom S., and Schmidt G. (1990) Effects of PubMed DOI PMC
Döbereiner A., Schmid A., Ludwig A., Goebel W., and Benz R. (1996) The effects of calcium and other polyvalent cations on channel formation by PubMed DOI
Gadeberg O. V., and Orskov I. (1984) PubMed DOI PMC
Keane W. F., Welch R., Gekker G., and Peterson P. K. (1987) Mechanism of PubMed PMC
Mobley H. L., Green D. M., Trifillis A. L., Johnson D. E., Chippendale G. R., Lockatell C. V., Jones B. D., and Warren J. W. (1990) Pyelonephritogenic PubMed DOI PMC
Suttorp N., Flöer B., Schnittler H., Seeger W., and Bhakdi S. (1990) Effects of PubMed DOI PMC
Cortajarena A. L., Goni F. M., and Ostolaza H. (2003) A receptor-binding region in PubMed DOI
Masín J., Konopásek I., Svobodová J., and Sebo P. (2004) Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim. Biophys. Acta 1660, 144–154 10.1016/j.bbamem.2003.11.008 PubMed DOI
Benz R., Maier E., Bauer S., and Ludwig A. (2014) The deletion of several amino acid stretches of PubMed DOI PMC
Valeva A., Walev I., Kemmer H., Weis S., Siegel I., Boukhallouk F., Wassenaar T. M., Chavakis T., and Bhakdi S. (2005) Binding of PubMed DOI
Khan F., He M., and Taussig M. J. (2006) Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 10.1021/ac060184l PubMed DOI
Franken K. L., Hiemstra H. S., van Meijgaarden K. E., Subronto Y., den Hartigh J., Ottenhoff T. H., and Drijfhout J. W. (2000) Purification of His-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr. Purif. 18, 95–99 10.1006/prep.1999.1162 PubMed DOI
Ladant D. (1988) Interaction of PubMed
Benz R., Janko K., Boos W., and Lauger P. (1978) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of PubMed DOI
Pérez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Perez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins