Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin

. 2020 Jul 10 ; 295 (28) : 9349-9365. [epub] 20200511

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32393579
Odkazy

PubMed 32393579
PubMed Central PMC7363143
DOI 10.1074/jbc.ra120.013630
PII: S0021-9258(17)48958-7
Knihovny.cz E-zdroje

The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.

Zobrazit více v PubMed

Linhartová I., Bumba L., Mašín J., Basler M., Osička R., Kamanova J., Prochazkova K., Adkins I., Hejnová-Holubová J., Sadilková L., Morová J., and Sebo P. (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 10.1111/j.1574-6976.2010.00231.x PubMed DOI PMC

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., and Osicka R. (2017) Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins 9, 300 10.3390/toxins9100300 PubMed DOI PMC

Sebo P., Osicka R., and Masin J. (2014) Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Exp. Rev. Vaccines 13, 1215–1227 10.1586/14760584.2014.944900 PubMed DOI

Vojtova J., Kamanova J., and Sebo P. (2006) Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr. Opin. Microbiol. 9, 69–75 10.1016/j.mib.2005.12.011 PubMed DOI

Gordon V. M., Leppla S. H., and Hewlett E. L. (1988) Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 56, 1066–1069 10.1128/IAI.56.5.1066-1069.1988 PubMed DOI PMC

Wolff J., Cook G. H., Goldhammer A. R., and Berkowitz S. A. (1980) Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 77, 3841–3844 10.1073/pnas.77.7.3841 PubMed DOI PMC

Gordon V. M., Young W. W. Jr., Lechler S. M., Gray M. C., Leppla S. H., and Hewlett E. L. (1989) Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis: different processes for interaction with and entry into target cells. J. Biol. Chem. 264, 14792–14796 PubMed

Hanski E. (1989) Invasive adenylate cyclase toxin of Bordetella pertussis. Trends Biochem. Sci. 14, 459–463 10.1016/0968-0004(89)90106-0 PubMed DOI

Morova J., Osicka R., Masin J., and Sebo P. (2008) RTX cytotoxins recognize β2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 105, 5355–5360 10.1073/pnas.0711400105 PubMed DOI PMC

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., and Leclerc C. (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the α(M)β(2) integrin (CD11b/CD18). J. Exp. Med. 193, 1035–1044 10.1084/jem.193.9.1035 PubMed DOI PMC

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., and Sebo P. (2015) Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4, e10766 10.7554/eLife.10766 PubMed DOI PMC

Hasan S., Osickova A., Bumba L., Novák P., Sebo P., and Osicka R. (2015) Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 589, 374–379 10.1016/j.febslet.2014.12.023 PubMed DOI

Benz R., Maier E., Ladant D., Ullmann A., and Sebo P. (1994) Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 269, 27231–27239 PubMed

Sakamoto H., Bellalou J., Sebo P., and Ladant D. (1992) Bordetella pertussis adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J. Biol. Chem. 267, 13598–13602 PubMed

Szabo G., Gray M. C., and Hewlett E. L. (1994) Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J. Biol. Chem. 269, 22496–22499 PubMed

Gray M., Szabo G., Otero A. S., Gray L., and Hewlett E. (1998) Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J. Biol. Chem. 273, 18260–18267 10.1074/jbc.273.29.18260 PubMed DOI

Wald T., Osickova A., Masin J., Liskova P. M., Petry-Podgorska I., Matousek T., Sebo P., and Osicka R. (2016) Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog. Dis. 74, ftw008 10.1093/femspd/ftw008 PubMed DOI

Bellalou J., Sakamoto H., Ladant D., Geoffroy C., and Ullmann A. (1990) Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 58, 3242–3247 10.1128/IAI.58.10.3242-3247.1990 PubMed DOI PMC

Ehrmann I. E., Gray M. C., Gordon V. M., Gray L. S., and Hewlett E. L. (1991) Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 278, 79–83 10.1016/0014-5793(91)80088-k PubMed DOI

Basler M., Masin J., Osicka R., and Sebo P. (2006) Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect. Immun. 74, 2207–2214 10.1128/IAI.74.4.2207-2214.2006 PubMed DOI PMC

Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E. L., Benz R., and Sebo P. (2013) Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect. Immun. 81, 4571–4582 10.1128/IAI.00711-13 PubMed DOI PMC

Gmira S., Karimova G., and Ladant D. (2001) Characterization of recombinant Bordetella pertussis adenylate cyclase toxins carrying passenger proteins. Res. Microbiol. 152, 889–900 10.1016/S0923-2508(01)01272-4 PubMed DOI

Holubova J., Kamanova J., Jelinek J., Tomala J., Masin J., Kosova M., Stanek O., Bumba L., Michalek J., Kovar M., and Sebo P. (2012) Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect. Immun. 80, 1181–1192 10.1128/IAI.05711-11 PubMed DOI PMC

Karimova G., Pidoux J., Ullmann A., and Ladant D. (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 5752–5756 10.1073/pnas.95.10.5752 PubMed DOI PMC

Sory M. P., and Cornelis G. R. (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14, 583–594 10.1111/j.1365-2958.1994.tb02191.x PubMed DOI

Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., and Sebo P. (2010) Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 75, 1550–1562 10.1111/j.1365-2958.2010.07077.x PubMed DOI

Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., and Sebo P. (2016) Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 6, 29137 10.1038/srep29137 PubMed DOI PMC

Subrini O., Sotomayor-Pérez A. C., Hessel A., Spiaczka-Karst J., Selwa E., Sapay N., Veneziano R., Pansieri J., Chopineau J., Ladant D., and Chenal A. (2013) Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J. Biol. Chem. 288, 32585–32598 10.1074/jbc.M113.508838 PubMed DOI PMC

Voegele A., Subrini O., Sapay N., Ladant D., and Chenal A. (2017) Membrane-active properties of an amphitropic peptide from the CyaA toxin translocation region. Toxins 9, 369 10.3390/toxins9110369 PubMed DOI PMC

Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., and Osicka R. (2007) Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J. Biol. Chem. 282, 12419–12429 10.1074/jbc.M611226200 PubMed DOI

Juntapremjit S., Thamwiriyasati N., Kurehong C., Prangkio P., Shank L., Powthongchin B., and Angsuthanasombat C. (2015) Functional importance of the Gly cluster in transmembrane helix 2 of the Bordetella pertussis CyaA-hemolysin: implications for toxin oligomerization and pore formation. Toxicon 106, 14–19 10.1016/j.toxicon.2015.09.006 PubMed DOI

Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., Sebo P., and Osicka R. (2017) The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 7, 9330 10.1038/s41598-017-09575-6 PubMed DOI PMC

Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., and Osicka R. (1999) An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 274, 37644–37650 10.1074/jbc.M611226200 PubMed DOI

Powthongchin B., and Angsuthanasombat C. (2009) Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment. Arch. Microbiol. 191, 1–9 10.1007/s00203-008-0421-3 PubMed DOI

Prangkio P., Juntapremjit S., Koehler M., Hinterdorfer P., and Angsuthanasombat C. (2018) Contributions of the Hydrophobic Helix 2 of the Bordetella pertussis CyaA-hemolysin to membrane permeabilization. Protein Pept. Lett. 25, 236–243 10.2174/0929866525666171201120456 PubMed DOI

Roderova J., Osickova A., Sukova A., Mikusova G., Fiser R., Sebo P., Osicka R., and Masin J. (2019) Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin. Sci. Rep. 9, 5758 10.1038/s41598-019-42200-2 PubMed DOI PMC

Basar T., Havlíček V., Bezoušková S., Halada P., Hackett M., and Šebo P. (1999) The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 274, 10777–10783 10.1074/jbc.274.16.10777 PubMed DOI

Hackett M., Guo L., Shabanowitz J., Hunt D. F., and Hewlett E. L. (1994) Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266, 433–435 10.1126/science.7939682 PubMed DOI

Hackett M., Walker C. B., Guo L., Gray M. C., Van Cuyk S., Ullmann A., Shabanowitz J., Hunt D. F., Hewlett E. L., and Sebo P. (1995) Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 270, 20250–20253 10.1074/jbc.270.35.20250 PubMed DOI

OsičKa R., OsičKová A., Basar T., Guermonprez P., Rojas M., Leclerc C., and Šebo P. (2000) Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 68, 247–256 10.1128/IAI.68.1.247-256.2000 PubMed DOI PMC

Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., Svergun D. I., Barinka C., and Sebo P. (2016) Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell 62, 47–62 10.1016/j.molcel.2016.03.018 PubMed DOI

Rose T., Sebo P., Bellalou J., and Ladant D. (1995) Interaction of calcium with Bordetella pertussis adenylate cyclase toxin: characterization of multiple calcium-binding sites and calcium-induced conformational changes. J. Biol. Chem. 270, 26370–26376 10.1074/jbc.270.44.26370 PubMed DOI

Rogel A., and Hanski E. (1992) Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes: translocation of the toxin across the membrane. J. Biol. Chem. 267, 22599–22605 PubMed

Bumba L., Masin J., Fiser R., and Sebo P. (2010) Bordetella adenylate cyclase toxin mobilizes its β2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 6, e1000901 10.1371/journal.ppat.1000901 PubMed DOI PMC

Fiser R., Masin J., Basler M., Krusek J., Spulákova V., Konopásek I., and Sebo P. (2007) Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin: membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J. Biol. Chem. 282, 2808–2820 10.1074/jbc.M609979200 PubMed DOI

Karst J. C., Barker R., Devi U., Swann M. J., Davi M., Roser S. J., Ladant D., and Chenal A. (2012) Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin. J. Biol. Chem. 287, 9200–9212 10.1074/jbc.M111.316166 PubMed DOI PMC

González-Bullón D., Uribe K. B., Martín C., and Ostolaza H. (2017) Phospholipase A activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain. Proc. Natl. Acad. Sci. U.S.A. 114, E6784–E6793 10.1073/pnas.1701783114 PubMed DOI PMC

Bumba L., Masin J., Osickova A., Osicka R., and Sebo P. (2018) Bordetella pertussis adenylate cyclase toxin does not possess a phospholipase A activity; serine 606 and aspartate 1079 residues are not involved in target cell delivery of the adenylyl cyclase enzyme domain. Toxins 10, 245 10.3390/toxins10060245 PubMed DOI PMC

Masin J., Osicka R., Bumba L., and Sebo P. (2018) Phospholipase A activity of adenylate cyclase toxin? Proc. Natl. Acad. Sci. U.S.A. 115, E2489–E2490 10.1073/pnas.1722588115 PubMed DOI PMC

Voegele A., Sadi M., Raoux-Barbot D., Douche T., Matondo M., Ladant D., and Chenal A. (2019) The adenylate cyclase (CyaA) toxin from Bordetella pertussis has no detectable phospholipase A (PLA) activity in vitro. Toxins 11, 111 10.3390/toxins11020111 PubMed DOI PMC

Johnsen N., Hamilton A. D. M., Greve A. S., Christensen M. G., Therkildsen J. R., Wehmöller J., Skals M., and Praetorius H. A. (2019) α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of Escherichia coli-induced bacteraemia. Cell. Microbiol. 21, e13017 10.1111/cmi.13017 PubMed DOI

Schwidder M., Heinisch L., and Schmidt H. (2019) Genetics, toxicity, and distribution of enterohemorrhagic Escherichia coli hemolysin. Toxins 11, 502 10.3390/toxins11090502 PubMed DOI PMC

Ristow L. C., and Welch R. A. (2016) Hemolysin of uropathogenic Escherichia coli: a cloak or a dagger? Biochim. Biophys. Acta 1858, 538–545 10.1016/j.bbamem.2015.08.015 PubMed DOI

Hyland C., Vuillard L., Hughes C., and Koronakis V. (2001) Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J. Bacteriol. 183, 5364–5370 10.1128/JB.183.18.5364-5370.2001 PubMed DOI PMC

Soloaga A., Veiga M. P., García-Segura L. M., Ostolaza H., Brasseur R., and Goñi F. M. (1999) Insertion of Escherichia coli α-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Mol. Microbiol. 31, 1013–1024 10.1046/j.1365-2958.1999.01225.x PubMed DOI

Issartel J. P., Koronakis V., and Hughes C. (1991) Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351, 759–761 10.1038/351759a0 PubMed DOI

Lim K. B., Walker C. R., Guo L., Pellett S., Shabanowitz J., Hunt D. F., Hewlett E. L., Ludwig A., Goebel W., Welch R. A., and Hackett M. (2000) Escherichia coli α-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 275, 36698–36702 10.1074/jbc.C000544200 PubMed DOI

Stanley P., Packman L. C., Koronakis V., and Hughes C. (1994) Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science 266, 1992–1996 10.1126/science.7801126 PubMed DOI

Cortajarena A. L., Goñi F. M., and Ostolaza H. (2001) Glycophorin as a receptor for Escherichia coli α-hemolysin in erythrocytes. J. Biol. Chem. 276, 12513–12519 10.1074/jbc.M006792200 PubMed DOI

Lally E. T., Kieba I. R., Sato A., Green C. L., Rosenbloom J., Korostoff J., Wang J. F., Shenker B. J., Ortlepp S., Robinson M. K., and Billings P. C. (1997) RTX toxins recognize a β2 integrin on the surface of human target cells. J. Biol. Chem. 272, 30463–30469 10.1074/jbc.272.48.30463 PubMed DOI

Ristow L. C., Tran V., Schwartz K. J., Pankratz L., Mehle A., Sauer J. D., and Welch R. A. (2019) The extracellular domain of the β2 integrin β subunit (CD18) is sufficient for Escherichia coli hemolysin and Aggregatibacter actinomycetemcomitans leukotoxin cytotoxic activity. mBio 10, e01459–19 PubMed PMC

Wiles T. J., and Mulvey M. A. (2013) The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol. 8, 73–84 10.2217/fmb.12.131 PubMed DOI PMC

Ahmad J. N., Cerny O., Linhartova I., Masin J., Osicka R., and Sebo P. (2016) cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell. Microbiol. 18, 384–398 10.1111/cmi.12519 PubMed DOI

Cerny O., Anderson K. E., Stephens L. R., Hawkins P. T., and Sebo P. (2017) cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C Activity. J. Immunol. 198, 1285–1296 10.4049/jimmunol.1601309 PubMed DOI

Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., and Sebo P. (2015) Bordetella pertussis adenylate cyclase toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 phosphatase. J. Immunol. 194, 4901–4913 10.4049/jimmunol.1402941 PubMed DOI

Confer D. L., and Eaton J. W. (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217, 948–950 10.1126/science.6287574 PubMed DOI

Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., and Sebo P. (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 181, 5587–5597 10.4049/jimmunol.181.8.5587 PubMed DOI

Pearson R. D., Symes P., Conboy M., Weiss A. A., and Hewlett E. L. (1987) Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J. Immunol. 139, 2749–2754 PubMed

El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., and Leclerc C. (2003) Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 278, 38514–38521 10.1074/jbc.M304387200 PubMed DOI

Wang X., Gray M. C., Hewlett E. L., and Maynard J. A. (2015) The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. J. Biol. Chem. 290, 3576–3591 10.1074/jbc.M114.585281 PubMed DOI PMC

Wang X., Stapleton J. A., Klesmith J. R., Hewlett E. L., Whitehead T. A., and Maynard J. A. (2017) Fine epitope mapping of two antibodies neutralizing the Bordetella adenylate cyclase toxin. Biochemistry 56, 1324–1336 10.1021/acs.biochem.6b01163 PubMed DOI PMC

Wagner C., Hänsch G. M., Stegmaier S., Denefleh B., Hug F., and Schoels M. (2001) The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent up-regulation and regulatory function. Eur. J. Immunol. 31, 1173–1180 10.1002/1521-4141(200104)31:4<1173::AID-IMMU1173>3.0.CO;2-9 PubMed DOI

Westrop G., Hormozi K., da Costa N., Parton R., and Coote J. (1997) Structure-function studies of the adenylate cyclase toxin of Bordetella pertussis and the leukotoxin of Pasteurella haemolytica by heterologous C protein activation and construction of hybrid proteins. J. Bacteriol. 179, 871–879 10.1128/JB.179.3.871-879.1997 PubMed DOI PMC

Basar T., Havlíček V., Bezoušková S., Hackett M., and Šebo P. (2001) Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase: substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 276, 348–354 10.1074/jbc.M006463200 PubMed DOI

Rogel A., Schultz J. E., Brownlie R. M., Coote J. G., Parton R., and Hanski E. (1989) Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. EMBO J. 8, 2755–2760 10.1002/j.1460-2075.1989.tb08417.x PubMed DOI PMC

Soloaga A., Ostolaza H., Goñi F. M., and de la Cruz F. (1996) Purification of Escherichia coli pro-haemolysin, and a comparison with the properties of mature α-haemolysin. Eur. J. Biochem. 238, 418–422 10.1111/j.1432-1033.1996.0418z.x PubMed DOI

Karst J. C., Ntsogo Enguene V. Y., Cannella S. E., Subrini O., Hessel A., Debard S., Ladant D., and Chenal A. (2014) Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 289, 30702–30716 10.1074/jbc.M114.580852 PubMed DOI PMC

O'Brien D. P., Cannella S. E., Voegele A., Raoux‐Barbot D., Davi M., Douché T., Matondo M., Brier S., Ladant D., and Chenal A. (2019) Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 33, 10065–10076 10.1096/fj.201802442RR PubMed DOI

Betsou F., Sebo P., and Guiso N. (1993) CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 61, 3583–3589 10.1128/IAI.61.9.3583-3589.1993 PubMed DOI PMC

Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., Benz R., Leclerc C., and Sebo P. (2005) Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44, 12759–12766 10.1021/bi050459b PubMed DOI

Bhakdi S., Greulich S., Muhly M., Eberspächer B., Becker H., Thiele A., and Hugo F. (1989) Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J. Exp. Med. 169, 737–754 10.1084/jem.169.3.737 PubMed DOI PMC

Bhakdi S., Muhly M., Korom S., and Schmidt G. (1990) Effects of Escherichia coli hemolysin on human monocytes: cytocidal action and stimulation of interleukin 1 release. J. Clin. Investig. 85, 1746–1753 10.1172/JCI114631 PubMed DOI PMC

Döbereiner A., Schmid A., Ludwig A., Goebel W., and Benz R. (1996) The effects of calcium and other polyvalent cations on channel formation by Escherichia coli α-hemolysin in red blood cells and lipid bilayer membranes. Eur. J. Biochem. 240, 454–460 10.1111/j.1432-1033.1996.0454h.x PubMed DOI

Gadeberg O. V., and Orskov I. (1984) In vitro cytotoxic effect of alpha-hemolytic Escherichia coli on human blood granulocytes. Infect. Immun. 45, 255–260 10.1128/IAI.45.1.255-260.1984 PubMed DOI PMC

Keane W. F., Welch R., Gekker G., and Peterson P. K. (1987) Mechanism of Escherichia coli α-hemolysin-induced injury to isolated renal tubular cells. Am. J. Pathol. 126, 350–357 PubMed PMC

Mobley H. L., Green D. M., Trifillis A. L., Johnson D. E., Chippendale G. R., Lockatell C. V., Jones B. D., and Warren J. W. (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect. Immun. 58, 1281–1289 10.1128/IAI.58.5.1281-1289.1990 PubMed DOI PMC

Suttorp N., Flöer B., Schnittler H., Seeger W., and Bhakdi S. (1990) Effects of Escherichia coli hemolysin on endothelial cell function. Infect. Immun. 58, 3796–3801 10.1128/IAI.58.11.3796-3801.1990 PubMed DOI PMC

Cortajarena A. L., Goni F. M., and Ostolaza H. (2003) A receptor-binding region in Escherichia coli α-haemolysin. J. Biol. Chem. 278, 19159–19163 10.1074/jbc.M208552200 PubMed DOI

Masín J., Konopásek I., Svobodová J., and Sebo P. (2004) Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim. Biophys. Acta 1660, 144–154 10.1016/j.bbamem.2003.11.008 PubMed DOI

Benz R., Maier E., Bauer S., and Ludwig A. (2014) The deletion of several amino acid stretches of Escherichia coli α-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One 9, e112248 10.1371/journal.pone.0112248 PubMed DOI PMC

Valeva A., Walev I., Kemmer H., Weis S., Siegel I., Boukhallouk F., Wassenaar T. M., Chavakis T., and Bhakdi S. (2005) Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J. Biol. Chem. 280, 36657–36663 10.1074/jbc.M507690200 PubMed DOI

Khan F., He M., and Taussig M. J. (2006) Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 10.1021/ac060184l PubMed DOI

Franken K. L., Hiemstra H. S., van Meijgaarden K. E., Subronto Y., den Hartigh J., Ottenhoff T. H., and Drijfhout J. W. (2000) Purification of His-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr. Purif. 18, 95–99 10.1006/prep.1999.1162 PubMed DOI

Ladant D. (1988) Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 263, 2612–2618 PubMed

Benz R., Janko K., Boos W., and Lauger P. (1978) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta 511, 305–319 10.1016/0005-2736(78)90269-9 PubMed DOI

Pérez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Perez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration

. 2023 Aug ; 299 (8) : 104978. [epub] 20230628

Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes

. 2022 Jun ; 18 (6) : e1010577. [epub] 20220606

Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins

. 2022 Feb 27 ; 10 (3) : . [epub] 20220227

Selective Enhancement of the Cell-Permeabilizing Activity of Adenylate Cyclase Toxin Does Not Increase Virulence of Bordetella pertussis

. 2021 Oct 28 ; 22 (21) : . [epub] 20211028

Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins

. 2021 Oct 06 ; 11 (1) : 19814. [epub] 20211006

Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein

. 2021 Aug 23 ; 22 (16) : . [epub] 20210823

Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin

. 2021 Jul ; 297 (1) : 100833. [epub] 20210526

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace