Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin

. 2020 Jul 10 ; 295 (28) : 9349-9365. [epub] 20200511

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32393579
Odkazy

PubMed 32393579
PubMed Central PMC7363143
DOI 10.1074/jbc.ra120.013630
PII: S0021-9258(17)48958-7
Knihovny.cz E-zdroje

The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.

Zobrazit více v PubMed

Linhartová I., Bumba L., Mašín J., Basler M., Osička R., Kamanova J., Prochazkova K., Adkins I., Hejnová-Holubová J., Sadilková L., Morová J., and Sebo P. (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 10.1111/j.1574-6976.2010.00231.x PubMed DOI PMC

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., and Osicka R. (2017) Structure-function relationships underlying the capacity of PubMed DOI PMC

Sebo P., Osicka R., and Masin J. (2014) Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Exp. Rev. Vaccines 13, 1215–1227 10.1586/14760584.2014.944900 PubMed DOI

Vojtova J., Kamanova J., and Sebo P. (2006) PubMed DOI

Gordon V. M., Leppla S. H., and Hewlett E. L. (1988) Inhibitors of receptor-mediated endocytosis block the entry of PubMed DOI PMC

Wolff J., Cook G. H., Goldhammer A. R., and Berkowitz S. A. (1980) Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 77, 3841–3844 10.1073/pnas.77.7.3841 PubMed DOI PMC

Gordon V. M., Young W. W. Jr., Lechler S. M., Gray M. C., Leppla S. H., and Hewlett E. L. (1989) Adenylate cyclase toxins from PubMed

Hanski E. (1989) Invasive adenylate cyclase toxin of PubMed DOI

Morova J., Osicka R., Masin J., and Sebo P. (2008) RTX cytotoxins recognize β2 integrin receptors through PubMed DOI PMC

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., and Leclerc C. (2001) The adenylate cyclase toxin of PubMed DOI PMC

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., and Sebo P. (2015) PubMed DOI PMC

Hasan S., Osickova A., Bumba L., Novák P., Sebo P., and Osicka R. (2015) Interaction of PubMed DOI

Benz R., Maier E., Ladant D., Ullmann A., and Sebo P. (1994) Adenylate cyclase toxin (CyaA) of PubMed

Sakamoto H., Bellalou J., Sebo P., and Ladant D. (1992) PubMed

Szabo G., Gray M. C., and Hewlett E. L. (1994) Adenylate cyclase toxin from PubMed

Gray M., Szabo G., Otero A. S., Gray L., and Hewlett E. (1998) Distinct mechanisms for K+ efflux, intoxication, and hemolysis by PubMed DOI

Wald T., Osickova A., Masin J., Liskova P. M., Petry-Podgorska I., Matousek T., Sebo P., and Osicka R. (2016) Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of PubMed DOI

Bellalou J., Sakamoto H., Ladant D., Geoffroy C., and Ullmann A. (1990) Deletions affecting hemolytic and toxin activities of PubMed DOI PMC

Ehrmann I. E., Gray M. C., Gordon V. M., Gray L. S., and Hewlett E. L. (1991) Hemolytic activity of adenylate cyclase toxin from PubMed DOI

Basler M., Masin J., Osicka R., and Sebo P. (2006) Pore-forming and enzymatic activities of PubMed DOI PMC

Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E. L., Benz R., and Sebo P. (2013) Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins PubMed DOI PMC

Gmira S., Karimova G., and Ladant D. (2001) Characterization of recombinant PubMed DOI

Holubova J., Kamanova J., Jelinek J., Tomala J., Masin J., Kosova M., Stanek O., Bumba L., Michalek J., Kovar M., and Sebo P. (2012) Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the PubMed DOI PMC

Karimova G., Pidoux J., Ullmann A., and Ladant D. (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 5752–5756 10.1073/pnas.95.10.5752 PubMed DOI PMC

Sory M. P., and Cornelis G. R. (1994) Translocation of a hybrid YopE-adenylate cyclase from PubMed DOI

Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., and Sebo P. (2010) Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 75, 1550–1562 10.1111/j.1365-2958.2010.07077.x PubMed DOI

Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., Linhartova I., Osicka R., and Sebo P. (2016) Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 6, 29137 10.1038/srep29137 PubMed DOI PMC

Subrini O., Sotomayor-Pérez A. C., Hessel A., Spiaczka-Karst J., Selwa E., Sapay N., Veneziano R., Pansieri J., Chopineau J., Ladant D., and Chenal A. (2013) Characterization of a membrane-active peptide from the PubMed DOI PMC

Voegele A., Subrini O., Sapay N., Ladant D., and Chenal A. (2017) Membrane-active properties of an amphitropic peptide from the CyaA toxin translocation region. Toxins 9, 369 10.3390/toxins9110369 PubMed DOI PMC

Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., and Osicka R. (2007) Segments crucial for membrane translocation and pore-forming activity of PubMed DOI

Juntapremjit S., Thamwiriyasati N., Kurehong C., Prangkio P., Shank L., Powthongchin B., and Angsuthanasombat C. (2015) Functional importance of the Gly cluster in transmembrane helix 2 of the PubMed DOI

Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., Sebo P., and Osicka R. (2017) The conserved tyrosine residue 940 plays a key structural role in membrane interaction of PubMed DOI PMC

Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., Sebo P., and Osicka R. (1999) An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 274, 37644–37650 10.1074/jbc.M611226200 PubMed DOI

Powthongchin B., and Angsuthanasombat C. (2009) Effects on haemolytic activity of single proline substitutions in the PubMed DOI

Prangkio P., Juntapremjit S., Koehler M., Hinterdorfer P., and Angsuthanasombat C. (2018) Contributions of the Hydrophobic Helix 2 of the PubMed DOI

Roderova J., Osickova A., Sukova A., Mikusova G., Fiser R., Sebo P., Osicka R., and Masin J. (2019) Residues 529 to 549 participate in membrane penetration and pore-forming activity of the PubMed DOI PMC

Basar T., Havlíček V., Bezoušková S., Halada P., Hackett M., and Šebo P. (1999) The conserved lysine 860 in the additional fatty-acylation site of PubMed DOI

Hackett M., Guo L., Shabanowitz J., Hunt D. F., and Hewlett E. L. (1994) Internal lysine palmitoylation in adenylate cyclase toxin from PubMed DOI

Hackett M., Walker C. B., Guo L., Gray M. C., Van Cuyk S., Ullmann A., Shabanowitz J., Hunt D. F., Hewlett E. L., and Sebo P. (1995) Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in PubMed DOI

OsičKa R., OsičKová A., Basar T., Guermonprez P., Rojas M., Leclerc C., and Šebo P. (2000) Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by PubMed DOI PMC

Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., Svergun D. I., Barinka C., and Sebo P. (2016) Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell 62, 47–62 10.1016/j.molcel.2016.03.018 PubMed DOI

Rose T., Sebo P., Bellalou J., and Ladant D. (1995) Interaction of calcium with PubMed DOI

Rogel A., and Hanski E. (1992) Distinct steps in the penetration of adenylate cyclase toxin of PubMed

Bumba L., Masin J., Fiser R., and Sebo P. (2010) PubMed DOI PMC

Fiser R., Masin J., Basler M., Krusek J., Spulákova V., Konopásek I., and Sebo P. (2007) Third activity of PubMed DOI

Karst J. C., Barker R., Devi U., Swann M. J., Davi M., Roser S. J., Ladant D., and Chenal A. (2012) Identification of a region that assists membrane insertion and translocation of the catalytic domain of PubMed DOI PMC

González-Bullón D., Uribe K. B., Martín C., and Ostolaza H. (2017) Phospholipase A activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain. Proc. Natl. Acad. Sci. U.S.A. 114, E6784–E6793 10.1073/pnas.1701783114 PubMed DOI PMC

Bumba L., Masin J., Osickova A., Osicka R., and Sebo P. (2018) PubMed DOI PMC

Masin J., Osicka R., Bumba L., and Sebo P. (2018) Phospholipase A activity of adenylate cyclase toxin? Proc. Natl. Acad. Sci. U.S.A. 115, E2489–E2490 10.1073/pnas.1722588115 PubMed DOI PMC

Voegele A., Sadi M., Raoux-Barbot D., Douche T., Matondo M., Ladant D., and Chenal A. (2019) The adenylate cyclase (CyaA) toxin from PubMed DOI PMC

Johnsen N., Hamilton A. D. M., Greve A. S., Christensen M. G., Therkildsen J. R., Wehmöller J., Skals M., and Praetorius H. A. (2019) α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of PubMed DOI

Schwidder M., Heinisch L., and Schmidt H. (2019) Genetics, toxicity, and distribution of enterohemorrhagic PubMed DOI PMC

Ristow L. C., and Welch R. A. (2016) Hemolysin of uropathogenic PubMed DOI

Hyland C., Vuillard L., Hughes C., and Koronakis V. (2001) Membrane interaction of PubMed DOI PMC

Soloaga A., Veiga M. P., García-Segura L. M., Ostolaza H., Brasseur R., and Goñi F. M. (1999) Insertion of PubMed DOI

Issartel J. P., Koronakis V., and Hughes C. (1991) Activation of PubMed DOI

Lim K. B., Walker C. R., Guo L., Pellett S., Shabanowitz J., Hunt D. F., Hewlett E. L., Ludwig A., Goebel W., Welch R. A., and Hackett M. (2000) PubMed DOI

Stanley P., Packman L. C., Koronakis V., and Hughes C. (1994) Fatty acylation of two internal lysine residues required for the toxic activity of PubMed DOI

Cortajarena A. L., Goñi F. M., and Ostolaza H. (2001) Glycophorin as a receptor for PubMed DOI

Lally E. T., Kieba I. R., Sato A., Green C. L., Rosenbloom J., Korostoff J., Wang J. F., Shenker B. J., Ortlepp S., Robinson M. K., and Billings P. C. (1997) RTX toxins recognize a β2 integrin on the surface of human target cells. J. Biol. Chem. 272, 30463–30469 10.1074/jbc.272.48.30463 PubMed DOI

Ristow L. C., Tran V., Schwartz K. J., Pankratz L., Mehle A., Sauer J. D., and Welch R. A. (2019) The extracellular domain of the β2 integrin β subunit (CD18) is sufficient for PubMed PMC

Wiles T. J., and Mulvey M. A. (2013) The RTX pore-forming toxin α-hemolysin of uropathogenic PubMed DOI PMC

Ahmad J. N., Cerny O., Linhartova I., Masin J., Osicka R., and Sebo P. (2016) cAMP signalling of PubMed DOI

Cerny O., Anderson K. E., Stephens L. R., Hawkins P. T., and Sebo P. (2017) cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C Activity. J. Immunol. 198, 1285–1296 10.4049/jimmunol.1601309 PubMed DOI

Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., and Sebo P. (2015) PubMed DOI

Confer D. L., and Eaton J. W. (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217, 948–950 10.1126/science.6287574 PubMed DOI

Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., and Sebo P. (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 181, 5587–5597 10.4049/jimmunol.181.8.5587 PubMed DOI

Pearson R. D., Symes P., Conboy M., Weiss A. A., and Hewlett E. L. (1987) Inhibition of monocyte oxidative responses by PubMed

El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., and Leclerc C. (2003) Interaction of PubMed DOI

Wang X., Gray M. C., Hewlett E. L., and Maynard J. A. (2015) The PubMed DOI PMC

Wang X., Stapleton J. A., Klesmith J. R., Hewlett E. L., Whitehead T. A., and Maynard J. A. (2017) Fine epitope mapping of two antibodies neutralizing the PubMed DOI PMC

Wagner C., Hänsch G. M., Stegmaier S., Denefleh B., Hug F., and Schoels M. (2001) The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent up-regulation and regulatory function. Eur. J. Immunol. 31, 1173–1180 10.1002/1521-4141(200104)31:4<1173::AID-IMMU1173>3.0.CO;2-9 PubMed DOI

Westrop G., Hormozi K., da Costa N., Parton R., and Coote J. (1997) Structure-function studies of the adenylate cyclase toxin of PubMed DOI PMC

Basar T., Havlíček V., Bezoušková S., Hackett M., and Šebo P. (2001) Acylation of lysine 983 is sufficient for toxin activity of PubMed DOI

Rogel A., Schultz J. E., Brownlie R. M., Coote J. G., Parton R., and Hanski E. (1989) PubMed DOI PMC

Soloaga A., Ostolaza H., Goñi F. M., and de la Cruz F. (1996) Purification of PubMed DOI

Karst J. C., Ntsogo Enguene V. Y., Cannella S. E., Subrini O., Hessel A., Debard S., Ladant D., and Chenal A. (2014) Calcium, acylation, and molecular confinement favor folding of PubMed DOI PMC

O'Brien D. P., Cannella S. E., Voegele A., Raoux‐Barbot D., Davi M., Douché T., Matondo M., Brier S., Ladant D., and Chenal A. (2019) Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 33, 10065–10076 10.1096/fj.201802442RR PubMed DOI

Betsou F., Sebo P., and Guiso N. (1993) CyaC-mediated activation is important not only for toxic but also for protective activities of PubMed DOI PMC

Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., Benz R., Leclerc C., and Sebo P. (2005) Acylation of lysine 860 allows tight binding and cytotoxicity of PubMed DOI

Bhakdi S., Greulich S., Muhly M., Eberspächer B., Becker H., Thiele A., and Hugo F. (1989) Potent leukocidal action of PubMed DOI PMC

Bhakdi S., Muhly M., Korom S., and Schmidt G. (1990) Effects of PubMed DOI PMC

Döbereiner A., Schmid A., Ludwig A., Goebel W., and Benz R. (1996) The effects of calcium and other polyvalent cations on channel formation by PubMed DOI

Gadeberg O. V., and Orskov I. (1984) PubMed DOI PMC

Keane W. F., Welch R., Gekker G., and Peterson P. K. (1987) Mechanism of PubMed PMC

Mobley H. L., Green D. M., Trifillis A. L., Johnson D. E., Chippendale G. R., Lockatell C. V., Jones B. D., and Warren J. W. (1990) Pyelonephritogenic PubMed DOI PMC

Suttorp N., Flöer B., Schnittler H., Seeger W., and Bhakdi S. (1990) Effects of PubMed DOI PMC

Cortajarena A. L., Goni F. M., and Ostolaza H. (2003) A receptor-binding region in PubMed DOI

Masín J., Konopásek I., Svobodová J., and Sebo P. (2004) Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim. Biophys. Acta 1660, 144–154 10.1016/j.bbamem.2003.11.008 PubMed DOI

Benz R., Maier E., Bauer S., and Ludwig A. (2014) The deletion of several amino acid stretches of PubMed DOI PMC

Valeva A., Walev I., Kemmer H., Weis S., Siegel I., Boukhallouk F., Wassenaar T. M., Chavakis T., and Bhakdi S. (2005) Binding of PubMed DOI

Khan F., He M., and Taussig M. J. (2006) Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 10.1021/ac060184l PubMed DOI

Franken K. L., Hiemstra H. S., van Meijgaarden K. E., Subronto Y., den Hartigh J., Ottenhoff T. H., and Drijfhout J. W. (2000) Purification of His-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr. Purif. 18, 95–99 10.1006/prep.1999.1162 PubMed DOI

Ladant D. (1988) Interaction of PubMed

Benz R., Janko K., Boos W., and Lauger P. (1978) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of PubMed DOI

Pérez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Perez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Acyl chains stabilize the acylated domain and determine the receptor-mediated interaction of the Bordetella adenylate cyclase toxin with cell membrane

. 2025 Jul ; 301 (7) : 110392. [epub] 20250619

A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration

. 2023 Aug ; 299 (8) : 104978. [epub] 20230628

Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes

. 2022 Jun ; 18 (6) : e1010577. [epub] 20220606

Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins

. 2022 Feb 27 ; 10 (3) : . [epub] 20220227

Selective Enhancement of the Cell-Permeabilizing Activity of Adenylate Cyclase Toxin Does Not Increase Virulence of Bordetella pertussis

. 2021 Oct 28 ; 22 (21) : . [epub] 20211028

Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins

. 2021 Oct 06 ; 11 (1) : 19814. [epub] 20211006

Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein

. 2021 Aug 23 ; 22 (16) : . [epub] 20210823

Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin

. 2021 Jul ; 297 (1) : 100833. [epub] 20210526

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...