Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34615931
PubMed Central
PMC8494930
DOI
10.1038/s41598-021-99112-3
PII: 10.1038/s41598-021-99112-3
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasový toxin genetika MeSH
- Bordetella bronchiseptica * genetika metabolismus MeSH
- Bordetella pertussis * genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- hemolýza MeSH
- infekce bakteriemi rodu Bordetella mikrobiologie MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- THP-1 buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
Pore-forming repeats in toxins (RTX) are key virulence factors of many Gram-negative pathogens. We have recently shown that the aromatic side chain of the conserved tyrosine residue 940 within the acylated segment of the RTX adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in target cell membrane interaction of the toxin. Therefore, we used a truncated CyaA-derived RTX719 construct to analyze the impact of Y940 substitutions on functional folding of the acylated segment of CyaA. Size exclusion chromatography combined with CD spectroscopy revealed that replacement of the aromatic side chain of Y940 by the side chains of alanine or proline residues disrupted the calcium-dependent folding of RTX719 and led to self-aggregation of the otherwise soluble and monomeric protein. Intriguingly, corresponding alanine substitutions of the conserved Y642, Y643 and Y639 residues in the homologous RtxA, HlyA and ApxIA hemolysins from Kingella kingae, Escherichia coli and Actinobacillus pleuropneumoniae, affected the membrane insertion, pore-forming (hemolytic) and cytotoxic capacities of these toxins only marginally. Activities of these toxins were impaired only upon replacement of the conserved tyrosines by proline residues. It appears, hence, that the critical role of the aromatic side chain of the Y940 residue is highly specific for the functional folding of the acylated domain of CyaA and determines its capacity to penetrate target cell membrane.
Zobrazit více v PubMed
Linhartova I, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Osickova A, et al. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 2020;295:9268–9280. doi: 10.1074/jbc.RA120.014122. PubMed DOI PMC
Gueirard P, Weber C, Le Coustumier A, Guiso N. Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J. Clin. Microbiol. 1995;33:2002–2006. doi: 10.1128/JCM.33.8.2002-2006.1995. PubMed DOI PMC
Khelef N, Sakamoto H, Guiso N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog. 1992;12:227–235. doi: 10.1016/0882-4010(92)90057-U. PubMed DOI
Novak J, et al. Structure-function relationships underlying the capacity of bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins. 2017 doi: 10.3390/toxins9100300. PubMed DOI PMC
Masin J, et al. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 2016;6:29137. doi: 10.1038/srep29137. PubMed DOI PMC
Subrini O, et al. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J. Biol. Chem. 2013;288:32585–32598. doi: 10.1074/jbc.M113.508838. PubMed DOI PMC
Voegele A, Subrini O, Sapay N, Ladant D, Chenal A. Membrane-active properties of an amphitropic peptide from the CyaA toxin translocation region. Toxins. 2017 doi: 10.3390/toxins9110369. PubMed DOI PMC
Voegele A, et al. A high-affinity calmodulin-binding site in the CyaA toxin translocation domain is essential for invasion of eukaryotic cells. Advanced science. 2021;8:2003630. doi: 10.1002/advs.202003630. PubMed DOI PMC
Basler M, et al. Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2007;282:12419–12429. doi: 10.1074/jbc.M611226200. PubMed DOI
Schindel C, et al. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Eur. J. Biochem. 2001;268:800–808. doi: 10.1046/j.1432-1327.2001.01937.x. PubMed DOI
Masin J, et al. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 2017;7:9330. doi: 10.1038/s41598-017-09575-6. PubMed DOI PMC
Osickova A, Osicka R, Maier E, Benz R, Sebo P. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 1999;274:37644–37650. doi: 10.1016/S0021-9258(19)52940-4. PubMed DOI
Powthongchin B, Angsuthanasombat C. Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment. Arch. Microbiol. 2009;191:1–9. doi: 10.1007/s00203-008-0421-3. PubMed DOI
Roderova J, et al. Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin. Sci. Rep. 2019;9:5758. doi: 10.1038/s41598-019-42200-2. PubMed DOI PMC
Basar T, et al. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 1999;274:10777–10783. doi: 10.1074/jbc.274.16.10777. PubMed DOI
Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. doi: 10.1126/science.7939682. PubMed DOI
Hackett M, et al. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 1995;270:20250–20253. doi: 10.1074/jbc.270.35.20250. PubMed DOI
Bumba L, et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type i secretion ducts. Mol Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI
Rose T, Sebo P, Bellalou J, Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin characterization of multiple calcium-binding sites and calcium-induced conformational changes. J. Biol. Chem. 1995;270:26370–26376. doi: 10.1074/jbc.270.44.26370. PubMed DOI
El-Azami-El-Idrissi M, et al. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 2003;278:38514–38521. doi: 10.1074/jbc.M304387200. PubMed DOI
Espinosa-Vinals CA, et al. Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin. J. Biol. Chem. 2021;297:100833. doi: 10.1016/j.jbc.2021.100833. PubMed DOI PMC
Guermonprez P, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC
Osicka R, et al. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Bumba L, Masin J, Fiser R, Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901. doi: 10.1371/journal.ppat.1000901. PubMed DOI PMC
Gordon VM, Leppla SH, Hewlett EL. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 1988;56:1066–1069. doi: 10.1128/iai.56.5.1066-1069.1988. PubMed DOI PMC
Wolff J, Cook GH, Goldhammer AR, Berkowitz SA. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. USA. 1980;77:3841–3844. doi: 10.1073/pnas.77.7.3841. PubMed DOI PMC
Benz R, Maier E, Ladant D, Ullmann A, Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 1994;269:27231–27239. doi: 10.1016/S0021-9258(18)46973-6. PubMed DOI
Gray M, Szabo G, Otero AS, Gray L, Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J. Biol. Chem. 1998;273:18260–18267. doi: 10.1074/jbc.273.29.18260. PubMed DOI
Wald T, et al. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem. 2014;450:57–62. doi: 10.1016/j.ab.2013.10.039. PubMed DOI
Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: a cloak or a dagger? Biochem. Biophys. Acta. 1858;538–545:2016. doi: 10.1016/j.bbamem.2015.08.015. PubMed DOI
Lally ET, et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J. Biol. Chem. 1997;272:30463–30469. doi: 10.1074/jbc.272.48.30463. PubMed DOI
Ristow LC, et al. The extracellular domain of the beta2 integrin beta subunit (CD18) is sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans leukotoxin cytotoxic activity. MBio. 2019 doi: 10.1128/mBio.01459-19. PubMed DOI PMC
Cortajarena AL, Goni FM, Ostolaza H. Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. J. Biol. Chem. 2001;276:12513–12519. doi: 10.1074/jbc.M006792200. PubMed DOI
Osickova A, et al. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 2018;7:178. doi: 10.1038/s41426-018-0179-x. PubMed DOI PMC
Yagupsky P, Dagan R. On king Saul, two missing mules, and Kingella kingae: the serendipitous discovery of a pediatric pathogen. Pediatr. Infect. Dis. J. 2018;37:1264–1266. doi: 10.1097/INF.0000000000002110. PubMed DOI
Ehrmann IE, Gray MC, Gordon VM, Gray LS, Hewlett EL. Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 1991;278:79–83. doi: 10.1016/0014-5793(91)80088-K. PubMed DOI
Masin J, et al. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect. Immun. 2013;81:4571–4582. doi: 10.1128/IAI.00711-13. PubMed DOI PMC
Ristow LC, Welch RA. RTX toxins ambush immunity's first cellular responders. Toxins. 2019 doi: 10.3390/toxins11120720. PubMed DOI PMC
Hasan S, et al. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. doi: 10.1016/j.febslet.2014.12.023. PubMed DOI
Morova J, Osicka R, Masin J, Sebo P. RTX cytotoxins recognize {beta}2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. USA. 2008;105(14):5355–5360. doi: 10.1073/pnas.0711400105. PubMed DOI PMC
Bakas L, Ostolaza H, Vaz WL, Goni FM. Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophys. J . 1996;71:1869–1876. doi: 10.1016/S0006-3495(96)79386-4. PubMed DOI PMC
Bhakdi S, Mackman N, Nicaud JM, Holland IB. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect. Immun. 1986;52:63–69. doi: 10.1128/IAI.52.1.63-69.1986. PubMed DOI PMC
Ostolaza H, Bakas L, Goni FM. Balance of electrostatic and hydrophobic interactions in the lysis of model membranes by E. coli alpha-haemolysin. J. Membr. Biol. 1997;158:137–145. doi: 10.1007/s002329900251. PubMed DOI
Brown AC, et al. Membrane localization of the repeats-in-toxin (RTX) leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS ONE. 2018;13:e0205871. doi: 10.1371/journal.pone.0205871. PubMed DOI PMC
Hyland C, Vuillard L, Hughes C, Koronakis V. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J. Bacteriol. 2001;183:5364–5370. doi: 10.1128/jb.183.18.5364-5370.2001. PubMed DOI PMC
Sanchez-Magraner L, et al. The calcium-binding C-terminal domain of Escherichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. J. Biol. Chem. 2007;282:11827–11835. doi: 10.1074/jbc.M700547200. PubMed DOI
Iwaki M, Ullmann A, Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol. Microbiol. 1995;17:1015–1024. doi: 10.1111/j.1365-2958.1995.mmi_17061015.x. PubMed DOI
Masin J, Konopasek I, Svobodova J, Sebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochem. Biophys. Acta. 2004;1660:144–154. doi: 10.1016/j.bbamem.2003.11.008. PubMed DOI
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: basis of their biological activity. Biochem. Biophys. Acta. 1858;526–537:2016. doi: 10.1016/j.bbamem.2015.10.025. PubMed DOI
Ludwig A, Vogel M, Goebel W. Mutations affecting activity and transport of haemolysin in Escherichia coli. Mol. Gen. Genet. MGG. 1987;206:238–245. doi: 10.1007/BF00333579. PubMed DOI
Vojtova-Vodolanova J, et al. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009;23:2831–2843. PubMed
Fukui-Miyazaki A, et al. The eukaryotic host factor 14-3-3 inactivates adenylate cyclase toxins of Bordetella bronchiseptica and B. parapertussis, but Not B. pertussis. MBio. 2018 doi: 10.1128/mBio.00628-18. PubMed DOI PMC
Henderson MW, et al. Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation. Infect. Immun. 2012;80:2061–2075. doi: 10.1128/IAI.00148-12. PubMed DOI PMC
Masin J, et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. doi: 10.1021/bi050459b. PubMed DOI
O'Brien DP, et al. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019;33:10065–10076. doi: 10.1096/fj.201802442RR. PubMed DOI
Galdiero S, Gouaux E. High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci. Publ. Protein Soc. 2004;13:1503–1511. doi: 10.1110/ps.03561104. PubMed DOI PMC
Huyet J, et al. Structural insights into clostridium perfringens delta toxin pore formation. PLoS ONE. 2013;8:e66673. doi: 10.1371/journal.pone.0066673. PubMed DOI PMC
Zhang S, et al. Structural basis for the unique ganglioside and cell membrane recognition mechanism of botulinum neurotoxin DC. Nat. Commun. 2017;8:1637. doi: 10.1038/s41467-017-01534-z. PubMed DOI PMC
Karst JC, et al. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014;289:30702–30716. doi: 10.1074/jbc.M114.580852. PubMed DOI PMC
Sukova A, et al. Negative charge of the AC-to-Hly linking segment modulates calcium-dependent membrane activities of Bordetella adenylate cyclase toxin. Biochim. Biophys. Acta. 2020;1862:183310. doi: 10.1016/j.bbamem.2020.183310. PubMed DOI
Meetum K, Imtong C, Katzenmeier G, Angsuthanasombat C. Acylation of the Bordetella pertussis CyaA-hemolysin: functional implications for efficient membrane insertion and pore formation. Biochim. Biophys. Acta. 1859;312–318:2017. doi: 10.1016/j.bbamem.2016.12.011. PubMed DOI
Bayram J, et al. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog. 2020;16:e1008512. doi: 10.1371/journal.ppat.1008512. PubMed DOI PMC
Lee SJ, Gray MC, Guo L, Sebo P, Hewlett EL. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 1999;67:2090–2095. doi: 10.1128/IAI.67.5.2090-2095.1999. PubMed DOI PMC
Stanek O, et al. Rapid purification of endotoxin-Free RTX toxins. Toxins. 2019 doi: 10.3390/toxins11060336. PubMed DOI PMC
Masin J, et al. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2020;295:9349–9365. doi: 10.1074/jbc.RA120.013630. PubMed DOI PMC
Holubova J, et al. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect. Immun. 2012;80:1181–1192. doi: 10.1128/IAI.05711-11. PubMed DOI PMC
Skopova K, et al. Cyclic AMP-elevating capacity of adenylate cyclase toxin-hemolysin is sufficient for lung infection but not for full virulence of Bordetella pertussis. Infect. Immun. 2017 doi: 10.1128/IAI.00937-16. PubMed DOI PMC
Ladant D. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 1988;263:2612–2618. doi: 10.1016/S0021-9258(18)69110-0. PubMed DOI
Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA. 1998;95:5752–5756. doi: 10.1073/pnas.95.10.5752. PubMed DOI PMC
Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995;11:681–684. PubMed
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins