Acyl chains stabilize the acylated domain and determine the receptor-mediated interaction of the Bordetella adenylate cyclase toxin with cell membrane
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40543585
PubMed Central
PMC12332401
DOI
10.1016/j.jbc.2025.110392
PII: S0021-9258(25)02242-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella pertussis, RTX toxin, acylation, adenylate cyclase toxin, protein folding,
- MeSH
- acylace MeSH
- adenylátcyklasový toxin * metabolismus chemie genetika MeSH
- Bordetella pertussis * metabolismus enzymologie genetika MeSH
- buněčná membrána * metabolismus MeSH
- lidé MeSH
- proteinové domény MeSH
- sbalování proteinů MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylátcyklasový toxin * MeSH
- vápník MeSH
Acylated domains (ADs), like that of the Bordetella pertussis adenylate cyclase toxin (CyaA), are structures found in all pore-forming toxins from the family of Repeat-in-ToXin (RTX) proteins. These AD segments are fatty-acylated on ε-amino groups of conserved lysine residues, such as the K860 and K983 residues of CyaA. The ε-amide-linked acyl chains are essential for toxin activity and promote irreversible membrane insertion of the CyaA molecule, thus enabling the toxin to translocate its N-terminal adenyl cyclase enzyme domain into the host cell cytoplasm. In parallel, the membrane-inserted CyaA molecules can oligomerize into cation-selective pores in the plasma membrane. Here, we show that the attached acyl chains are not only crucial for membrane insertion of the toxin but also play an important role in CyaA folding. We demonstrate that assembly of the noncanonical β-roll structure in the C-terminal segment of the AD of CyaA is cooperatively directed by the Ca2+-driven folding of the adjacent RTX domain. In contrast, the N-terminal AD segment consists of an α-helical structure that folds independently of Ca2+ ion binding and may form one or two acyl binding site(s) accommodating the acyl chains protruding from the C-terminal AD segment. This acyl-mediated interaction between the N- and C-terminal segments promotes local structural rearrangements within the AD that significantly enhances the stability of the toxin molecule. These findings highlight the critical role of the acyl modification in membrane interaction capacity and structural stability of the CyaA toxin.
Institute of Biotechnology of the Czech Academy of Sciences Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Linhartova I., Bumba L., Mašín J., Basler M., Osička R., Kamanová J., et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS. Microbiol. Rev. 2010;34:1076–1112. PubMed PMC
Baumann U. Structure-function relationships of the repeat domains of RTX toxins. Toxins. 2019;11 PubMed PMC
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. PubMed PMC
El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., Leclerc C. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 2003;278:38514–38521. PubMed
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4 PubMed PMC
Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell. Rep. 2022;40 PubMed PMC
Basler M., Masin J., Osicka R., Sebo P. Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect. Immun. 2006;74:2207–2214. PubMed PMC
Voegele A., O'Brien D.P., Subrini O., Sapay N., Cannella S.E., Enguéné V.Y.N., et al. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis. Pathog. Dis. 2018;76 PubMed
Fedele G., Schiavoni I., Adkins I., Klimova N., Sebo P. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: a subversive move to fool host immunity. Toxins. 2017;9:293. PubMed PMC
Ahmad J.N., Sebo P. Adenylate cyclase toxin tinkering with monocyte-macrophage differentiation. Front Immunol. 2020;11:2181. PubMed PMC
Bumba L., Masin J., Fiser R., Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. Plos Pathog. 2010;6 PubMed PMC
Fiser R., Masín J., Basler M., Krusek J., Spuláková V., Konopásek I., Sebo P. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J. Biol. Chem. 2007;282:2808–2820. PubMed
Fiser R., Masin J., Bumba L., Pospisilova E., Fayolle C., Basler M., et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8 PubMed PMC
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: basis of their biological activity. Biochim. Biophys. Acta. 2016;1858:526–537. PubMed
Masin J., Fiser R., Linhartova I., Osicka R., Bumba L., Hewlett E.L., et al. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect. Immun. 2013;81:4571–4582. PubMed PMC
Holland I.B., Peherstorfer S., Kanonenberg K., Lenders M., Reimann S., Schmitt L. Type I protein secretion-deceptively simple yet with a wide range of mechanistic variability across the family. EcoSal Plus. 2016;7 doi: 10.1128/ecosalplus.ESP-0019-2015. PubMed DOI PMC
Hodges F.J., Torres V.V.L., Cunningham A.F., Henderson I.R., Icke C. Redefining the bacterial Type I protein secretion system. Adv. Microb. Physiol. 2023;82:155–204. PubMed
Spitz O., Erenburg I.N., Beer T., Kanonenberg K., Holland I.B., Schmitt L. Type I secretion systems-one mechanism for all? Microbiol. Spectr. 2019;7 PubMed PMC
Rose T., Sebo P., Bellalou J., Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J. Biol. Chem. 1995;270:26370–26376. PubMed
Chenal A., Guijarro J.I., Raynal B., Delepierre M., Ladant D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 2009;284:1781–1789. PubMed
O'Brien D.P., Hernandez B., Durand D., Hourdel V., Sotomayor-Pérez A.C., Vachette P., et al. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci. Rep. 2015;5 PubMed PMC
Kenny B., Haigh R., Holland I.B. Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or β-galactosidase fused to the Hly C-terminal signal domain. Mol. Microbiol. 1991;5:2557–2568. PubMed
Lecher J., Schwarz C.K.W., Stoldt M., Smits S.H.J., Willbold D., Schmitt L. An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain. Structure. 2012;20:1778–1787. PubMed
Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through Type I secretion ducts. Mol. Cell. 2016;62:47–62. PubMed
Hackett M., Guo L., Shabanowitz J., Hunt D.F., Hewlett E.L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. PubMed
Hackett M., Walker C.B., Guo L., Gray M.C., Van Cuyk S., Ullmann A., et al. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 1995;270:20250–20253. PubMed
Osickova A., Khaliq H., Masin J., Jurnecka D., Sukova A., Fiser R., et al. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 2020;295:9268–9280. PubMed PMC
Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. PubMed
Cannella S.E., Ntsogo Enguéné V.Y., Davi M., Malosse C., Sotomayor Pérez A.C., Chamot-Rooke J., et al. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci. Rep. 2017;7 PubMed PMC
Guo Q., Shen Y., Lee Y.S., Gibbs C.S., Mrksich M., Tang W.J. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005;24:3190–3201. PubMed PMC
Motlova L., Klimova N., Fiser R., Sebo P., Bumba L. Continuous assembly of beta-roll structures is implicated in the Type I-dependent secretion of large repeat-in-toxins (RTX) proteins. J. Mol. Biol. 2020;432:5696–5710. PubMed
Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog. 2021;17 PubMed PMC
Sukova A., Bumba L., Srb P., Veverka V., Stanek O., Holubova J., et al. Negative charge of the AC-to-Hly linking segment modulates calcium-dependent membrane activities of Bordetella adenylate cyclase toxin. Biochim. Biophys. Acta. Biomembr. 2020;1862 PubMed
Chen G., Wang H., Bumba L., Masin J., Sebo P., Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J. Biol. Chem. 2023;299 PubMed PMC
Espinosa-Vinals C.A., Masin J., Holubova J., Stanek O., Jurnecka D., Osicka R., et al. Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin. J. Biol. Chem. 2021;297 PubMed PMC
Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., et al. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 2017;7:9330. PubMed PMC
Chenal A., Karst J.C., Sotomayor Pérez A.C., Wozniak A.K., Baron B., England P., Ladant D. Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys. J. 2010;99:3744–3753. PubMed PMC
Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73 PubMed PMC
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., et al. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins. 2017;9:300. PubMed PMC
Lepesheva A., Osickova A., Holubova J., Jurnecka D., Knoblochova S., Espinosa-Vinals C., et al. Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins. Sci. Rep. 2021;11 PubMed PMC
Buyachuihan L., Stegemann F., Grininger M. How acyl carrier proteins (ACPs) direct fatty acid and polyketide biosynthesis. Angew. Chem. Int. Edition. 2024;63 PubMed
Röttig A., Steinbüchel A. Acyltransferases in bacteria. Microbiol. Mol. Biol. Rev. 2013;77:277–321. PubMed PMC
Zornetzer G.A., Fox B.G., Markley J.L. Solution structures of spinach acyl carrier protein with decanoate and stearate. Biochemistry. 2006;45:5217–5227. PubMed PMC
Basar T., Havlícek V., Bezousková S., Halada P., Hackett M., Sebo P. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 1999;274:10777–10783. PubMed
Vorup-Jensen T., Jensen R.K. Structural immunology of complement receptors 3 and 4. Front. Immunol. 2018;9:2716. PubMed PMC
Chacko F.M., Schmitt L. Interaction of RTX toxins with the host cell plasma membrane. Biol. Chem. 2023;404:663–671. PubMed
O'Brien D.P., Cannella S.E., Voegele A., Raoux-Barbot D., Davi M., Douché T., et al. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 2019;33:10065–10076. PubMed
Lepesheva A., Grobarcikova M., Osickova A., Jurnecka D., Knoblochova S., Cizkova M., et al. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. Biochim. Biophys. Acta. Biomembr. 2024;1866 PubMed
Masin J., Osickova A., Jurnecka D., Klimova N., Khaliq H., Sebo P., Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2020;295:9349–9365. PubMed PMC
Basler M., Knapp O., Masin J., Fiser R., Maier E., Benz R., et al. Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2007;282:12419–12429. PubMed
Holubova J., Kamanova J., Jelinek J., Tomala J., Masin J., Kosova M., et al. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect. Immun. 2012;80:1181–1192. PubMed PMC
Basar T., Havlícek V., Bezousková S., Hackett M., Sebo P. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 2001;276:348–354. PubMed
Panjkovich A., Svergun D.I. CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics. 2018;34:1944–1946. PubMed PMC
Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. Primus : a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282.
Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R., Kikhney A.G., Petoukhov M.V., Molodenskiy D.S., et al. Atsas 3.0: expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 2021;54(Pt 1):343–355. PubMed PMC
Panjkovich A., Svergun D.I. Deciphering conformational transitions of proteins by small angle X-ray scattering and normal mode analysis. Phys. Chem. Chem. Phys. 2016;18:5707–5719. PubMed
Tria G., Mertens H.D.T., Kachala M., Svergun D.I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015;2:207–217. PubMed PMC