Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28934122
PubMed Central
PMC5666340
DOI
10.3390/toxins9100293
PII: toxins9100293
Knihovny.cz E-zdroje
- Klíčová slova
- T-helper cells, immune response, intracellular pathways, phagocytosis,
- MeSH
- adenylátcyklasový toxin imunologie MeSH
- AMP cyklický chemie MeSH
- Bordetella pertussis MeSH
- buněčná imunita MeSH
- dendritické buňky imunologie MeSH
- dýchací soustava imunologie mikrobiologie MeSH
- fagocytóza MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- makrofágy imunologie MeSH
- neutrofily imunologie MeSH
- pertuse imunologie MeSH
- regulační T-lymfocyty imunologie MeSH
- signální transdukce MeSH
- slizniční imunita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- AMP cyklický MeSH
Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host's respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3',5'-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.
Department of Infectious Diseases Istituto Superiore di Sanità Rome 00161 Italy
Faculty of Science Charles University Prague Prague 128 00 Czech Republic
Institute of Microbiology of the CAS v v i Prague 142 20 Czech Republic
Zobrazit více v PubMed
Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014;12:274–288. doi: 10.1038/nrmicro3235. PubMed DOI PMC
Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI
Goodwin M.S., Weiss A.A. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect. Immun. 1990;58:3445–3447. PubMed PMC
Khelef N., Sakamoto H., Guiso N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb. Pathog. 1992;12:227–235. doi: 10.1016/0882-4010(92)90057-U. PubMed DOI
Harvill E.T., Cotter P.A., Yuk M.H., Miller J.F. Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect. Immun. 1999;67:1493–1500. PubMed PMC
Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI
Hewlett E., Wolff J. Soluble adenylate cyclase from the culture medium of Bordetella pertussis: Purification and characterization. J. Bacteriol. 1976;127:890–898. PubMed PMC
Hewlett E.L., Manclark C.R., Wolff J. Adenyl cyclase in Bordetella pertussis vaccines. J. Infect. Dis. 1977;136:S216–S219. doi: 10.1093/infdis/136.Supplement.S216. PubMed DOI
Sebo P., Osicka R., Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev. Vaccines. 2014;13:1215–1227. doi: 10.1586/14760584.2014.944900. PubMed DOI
O’Garra A., Robinson D. Development and function of T helper 1 cells. Adv. Immunol. 2004;83:133–162. PubMed
Mowen K.A., Glimcher L.H. Signaling pathways in Th2 development. Immunol. Rev. 2004;202:203–222. doi: 10.1111/j.0105-2896.2004.00209.x. PubMed DOI
Harrington L.E., Mangan P.R., Weaver C.T. Expanding the effector CD4 T-cell repertoire: The Th17 lineage. Curr. Opin. Immunol. 2006;18:349–356. doi: 10.1016/j.coi.2006.03.017. PubMed DOI
Tsai H.C., Velichko S., Hung L.Y., Wu R. IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin. Dev. Immunol. 2013:1–12. doi: 10.1155/2013/267971. PubMed DOI PMC
Liew F.Y., McInnes I.B. The role of innate mediators in inflammatory response. Mol. Immunol. 2002;38:887–890. doi: 10.1016/S0161-5890(02)00014-7. PubMed DOI
Belkaid Y., Oldenhove G. Tuning microenvironments: Induction of regulatory T cells by dendritic cells. Immunity. 2008;29:362–371. doi: 10.1016/j.immuni.2008.08.005. PubMed DOI PMC
Zheng Y., Rudensky A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 2007;8:457–462. doi: 10.1038/ni1455. PubMed DOI
Jia L., Wu C. Differentiation, regulation and function of Th9 cells. Adv. Exp. Med. Biol. 2014;841:181–207. doi: 10.1007/978-94-017-9487-9_7. PubMed DOI
Kagami S., Rizzo H.L., Lee J.J., Koguchi Y., Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J. Investig. Dermatol. 2010;130:1373–1383. doi: 10.1038/jid.2009.399. PubMed DOI PMC
Vinuesa C.G., Linterman M.A., Yu D., MacLennan I.C. Follicular Helper T Cells. Annu. Rev. Immunol. 2016;34:335–368. doi: 10.1146/annurev-immunol-041015-055605. PubMed DOI
Fernandez-Botran R., Sanders V.M., Mosmann T.R., Vitetta E.S. Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells. J. Exp. Med. 1988;168:543–558. doi: 10.1084/jem.168.2.543. PubMed DOI PMC
Gajewski T.F., Fitch F.W. Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J. Immunol. 1988;140:4245–4252. PubMed
Veldhoen M., Hocking R.J., Flavell R.A., Stockinger B. Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 2006;7:1151–1156. doi: 10.1038/ni1391. PubMed DOI
Acosta-Rodriguez E.V., Napolitani G., Lanzavecchia A., Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007;8:942–949. doi: 10.1038/ni1496. PubMed DOI
Annunziato F., Cosmi L., Santarlasci V., Maggi L., Liotta F., Mazzinghi B., Parente E., Filì L., Ferri S., et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007;204:1849–1861. doi: 10.1084/jem.20070663. PubMed DOI PMC
Koenen H.J., Smeets R.L., Vink P.M., van Rijssen E., Boots A.M., Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112:2340–2352. doi: 10.1182/blood-2008-01-133967. PubMed DOI
Mills K.H., Barnard A., Watkins J., Redhead K. Cell-mediated immunity to Bordetella pertussis: Role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect. Immun. 1993;61:399–410. PubMed PMC
Leef M., Elkins K.L., Barbic J., Shahin R.D. Protective immunity to Bordetella pertussis requires both B cells and CD4(+) T cells for key functions other than specific antibody production. J. Exp. Med. 2000;191:841–852. doi: 10.1084/jem.191.11.1841. PubMed DOI PMC
Dirix V., Verscheure V., Vermeulen F., De Schutter I., Goetghebuer T., Locht C., Mascart F. Both CD4+ and CD8+ lymphocytes participate in the IFN-γ response to filamentous hemagglutinin from Bordetella pertussis in infants, children, and adults. Clin. Dev. Immunol. 2012:1–9. doi: 10.1155/2012/795958. PubMed DOI PMC
Ausiello C.M., Urbani F., la Sala A., Lande R., Cassone A. Vaccine- and antigen-dependent type 1 and type 2 cytokine induction after primary vaccination of infants with whole-cell or acellular pertussis vaccines. Infect. Immun. 1997;65:2168–2174. PubMed PMC
Ausiello C.M., Lande R., Urbani F., Di Carlo B., Stefanelli P., Salmaso S., Mastrantonio P., Cassone A. Cell-mediated immunity and antibody responses to Bordetella pertussis antigens in children with a history of pertussis infection and in recipients of an acellular pertussis vaccine. J. Infect. Dis. 2000;181:1989–1995. doi: 10.1086/315509. PubMed DOI
Mascart F., Verscheure V., Malfroot A., Hainaut M., Piérard D., Temerman S., Peltier A., Debrie A.S., Levy J., Del Giudice G., et al. Bordetella pertussis infection in 2-month-old infants promotes type 1 T cell responses. J. Immunol. 2003;170:1504–1509. doi: 10.4049/jimmunol.170.3.1504. PubMed DOI
Higgins S.C., Jarnicki A.G., Lavelle E.C., Mills K.H. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: Role of IL-17-producing T cells. J. Immunol. 2006;177:7980–7989. doi: 10.4049/jimmunol.177.11.7980. PubMed DOI
Andreasen C., Powell D.A., Carbonetti N.H. Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PLoS ONE. 2009;4:e7079. doi: 10.1371/journal.pone.0007079. PubMed DOI PMC
Dunne A., Ross P.J., Pospisilova E., Masin J., Meaney A., Sutton C.E., Iwakura Y., Tschopp J., Sebo P., Mills K.H. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol. 2010;185:1711–1719. doi: 10.4049/jimmunol.1000105. PubMed DOI
Feunou P.F., Bertout J., Locht C. T- and B-cell-mediated protection induced by novel, live attenuated pertussis vaccine in mice. Cross protection against parapertussis. PLoS ONE. 2010;5:e10178. doi: 10.1371/journal.pone.0010178. PubMed DOI PMC
Fedele G., Spensieri F., Palazzo R., Nasso M., Cheung G.Y., Coote J.G., Ausiello C.M. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways. PLoS ONE. 2010;5:e8734. doi: 10.1371/journal.pone.0008734. PubMed DOI PMC
Fedele G., Bianco M., Debrie A.S., Locht C., Ausiello C.M. Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J. Immunol. 2011;186:5388–5396. doi: 10.4049/jimmunol.1003765. PubMed DOI
Sansonetti P.J., Di Santo J.P. Debugging how bacteria manipulate the immune response. Immunity. 2007;26:149–161. doi: 10.1016/j.immuni.2007.02.004. PubMed DOI
Fedele G., Nasso M., Spensieri F., Palazzo R., Frasca L., Watanabe M., Ausiello C.M. Lipopolysaccharides from Bordetella pertussis and Bordetella parapertussis differently modulate human dendritic cell functions resulting in divergent prevalence of Th17-polarized responses. J. Immunol. 2008;181:208–216. doi: 10.4049/jimmunol.181.1.208. PubMed DOI
Jongerius I., Schuijt T.J., Mooi F.R., Pinelli E. Complement evasion by Bordetella pertussis: Implications for improving current vaccines. J. Mol. Med. 2015;93:395–402. doi: 10.1007/s00109-015-1259-1. PubMed DOI PMC
Hovingh E.S., van den Broek B., Kuipers B., Pinelli E., Rooijakkers S.H.M., Jongerius I. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface. PLoS Pathog. 2017;13:e1006531. doi: 10.1371/journal.ppat.1006531. PubMed DOI PMC
Coutte L., Locht C. Investigating pertussis toxin and its impact on vaccination. Future Microbiol. 2015;10:241–254. doi: 10.2217/fmb.14.123. PubMed DOI
Carbonetti N.H. Bordetella pertussis: New concepts in pathogenesis and treatment. Curr. Opin. Infect. Dis. 2016;29:287–294. doi: 10.1097/QCO.0000000000000264. PubMed DOI PMC
Carbonetti N.H. Pertussis leukocytosis: Mechanisms, clinical relevance and treatment. Pathog. Dis. 2016;74:pii:ftw087. doi: 10.1093/femspd/ftw087. PubMed DOI PMC
Lamberti Y.A., Hayes J.A., Perez Vidakovics M.L., Harvill E.T., Rodriguez M.E. Intracellular trafficking of Bordetella pertussis in human macrophages. Infect. Immun. 2010;78:907–913. doi: 10.1128/IAI.01031-09. PubMed DOI PMC
Lamberti Y., Gorgojo J., Massillo C., Rodriguez M.E. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival. Pathog. Dis. 2013;69:194–204. doi: 10.1111/2049-632X.12072. PubMed DOI
Nagamatsu K., Kuwae A., Konaka T., Nagai S., Yoshida S., Eguchi M., Watanabe M., Mimuro H., Koyasu S., Abe A. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J. Exp. Med. 2009;206:3073–3088. doi: 10.1084/jem.20090494. PubMed DOI PMC
Yuk M.H., Harvill E.T., Cotter P.A., Miller J.F. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol. Microbiol. 2000;35:991–1004. doi: 10.1046/j.1365-2958.2000.01785.x. PubMed DOI
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC
Vojtova J., Kamanova J., Sebo P. Bordetella adenylate cyclase toxin: A swift saboteur of host defense. Curr. Opin. Microbiol. 2006;9:69–75. doi: 10.1016/j.mib.2005.12.011. PubMed DOI
Linhartová I., Bumba L., Mašín J., Basler M., Osička R., Kamanová J., Procházková K., Adkins I., Hejnová-Holubová J., Sadílková L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Fiser R., Masín J., Basler M., Krusek J., Spuláková V., Konopásek I., Sebo P. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J. Biol. Chem. 2007;282:2808–2820. doi: 10.1074/jbc.M609979200. PubMed DOI
Bumba L., Masin J., Fiser R., Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6:e1000901. doi: 10.1371/journal.ppat.1000901. PubMed DOI PMC
Fiser R., Masin J., Bumba L., Pospisilova E., Fayolle C., Basler M., Sadilkova L., Adkins I., Kamanova J., Cerny J., et al. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog. 2012;8:e1002580. doi: 10.1371/journal.ppat.1002580. PubMed DOI PMC
Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC
Pearson R.D., Symes P., Conboy M., Weiss A.A., Hewlett E.L. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J. Immunol. 1987;139:2749–2754. PubMed
Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI
Weingart C.L., Weiss A.A. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect. Immun. 2000;68:1735–1739. doi: 10.1128/IAI.68.3.1735-1739.2000. PubMed DOI PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Friedman R.L., Fiederlein R.L., Glasser L., Galgiani J.N. Bordetella pertussis adenylate cyclase: Effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect. Immun. 1987;55:135–140. PubMed PMC
Eby J.C., Gray M.C., Hewlett E.L. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 2014:5256–5269. doi: 10.1128/IAI.02487-14. PubMed DOI PMC
Gorgojo J., Scharrig E., Gómez R.M., Harvill E.T., Rodríguez M.E. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms. PLoS ONE. 2017;12:e0169936. doi: 10.1371/journal.pone.0169936. PubMed DOI PMC
Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. J. Immunol. 2015;194:4901–4913. doi: 10.4049/jimmunol.1402941. PubMed DOI
Ahmad J.N., Cerny O., Linhartova I., Masin J., Osicka R., Sebo P. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol. 2016;18:384–398. doi: 10.1111/cmi.12519. PubMed DOI
Masure H.R. The adenylate cyclase toxin contributes to the survival of Bordetella pertussis within human macrophages. Microb. Pathog. 1993;14:253–260. doi: 10.1006/mpat.1993.1025. PubMed DOI
Khelef N., Zychlinsky A., Guiso N. Bordetella pertussis induces apoptosis in macrophages: Role of adenylate cyclase-hemolysin. Infect. Immun. 1993;61:4064–4071. PubMed PMC
Gueirard P., Druilhe A., Pretolani M., Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect. Immun. 1998;66:1718–1725. PubMed PMC
Skopova K., Tomalova B., Kanchev I., Rossmann P., Svedova M., Adkins I., Bibova I., Tomala J., Masin J., Guiso N., et al. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect. Immun. 2017;85:pii:e00937-16. doi: 10.1128/IAI.00937-16. PubMed DOI PMC
Eby J.C., Gray M.C., Warfel J.M., Paddock C.D., Jones T.F., Day S.R., Bowden J., Poulter M.D., Donato G.M., Merkel T.J., et al. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect. Immun. 2013;81:1390–1398. doi: 10.1128/IAI.00110-13. PubMed DOI PMC
Gonyar L.A., Gray M.C., Christianson G.J., Mehrad B., Hewlett E.L. Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. Infect. Immun. 2017;85 doi: 10.1128/IAI.00198-17. PubMed DOI PMC
Bagley K.C., Abdelwahab S.F., Tuskan R.G., Fouts T.R., Lewis G.K. Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J. Leukoc. Biol. 2002;72:962–969. PubMed
Ross P.J., Lavelle E.C., Mills K.H., Boyd A.P. Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect. Immun. 2004;72:1568–1579. doi: 10.1128/IAI.72.3.1568-1579.2004. PubMed DOI PMC
Skinner J.A., Reissinger A., Shen H., Yuk M.H. Bordetella type III secretion and adenylate cyclase toxin synergize to drive dendritic cells into a semimature state. J. Immunol. 2004;173:1934–1940. doi: 10.4049/jimmunol.173.3.1934. PubMed DOI
Spensieri F., Fedele G., Fazio C., Nasso M., Stefanelli P., Mastrantonio P., Ausiello C.M. Bordetella pertussis inhibition of interleukin-12 (IL-12) p70 in human monocyte-derived dendritic cells blocks IL-12 p35 through adenylate cyclase toxin-dependent cyclic AMP induction. Infect. Immun. 2006;74:2831–2838. doi: 10.1128/IAI.74.5.2831-2838.2006. PubMed DOI PMC
Hickey F.B., Brereton C.F., Mills K.H. Adenylate cyclase toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and IRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells. J. Leukoc. Biol. 2008;84:234–243. doi: 10.1189/jlb.0208113. PubMed DOI
Adkins I., Kamanova J., Kocourkova A., Svedova M., Tomala J., Janova H., Masin J., Chladkova B., Bumba L., Kovar M., et al. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PLoS ONE. 2014;9:e104064. doi: 10.1371/journal.pone.0104064. PubMed DOI PMC
Trinchieri G., Pflanz S., Kastelein R.A. The IL-12 family of heterodimeric cytokines: New players in the regulation of T cell responses. Immunity. 2003;19:641–644. doi: 10.1016/S1074-7613(03)00296-6. PubMed DOI
Gautier G., Humbert M., Deauvieau F., Scuiller M., Hiscott J., Bates E.E., Trinchieri G., Caux C., Garrone P. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J. Exp. Med. 2005;201:1435–1446. doi: 10.1084/jem.20041964. PubMed DOI PMC
Liu J., Guan X., Tamura T., Ozato K., Ma X. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J. Biol. Chem. 2004;279:55609–55617. doi: 10.1074/jbc.M406565200. PubMed DOI
Henderson M.W., Inatsuka C.S., Sheets A.J., Williams C.L., Benaron D.J., Donato G.M., Gray M.C., Hewlett E.L., Cotter P.A. Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation. Infect. Immun. 2012;80:2061–2075. doi: 10.1128/IAI.00148-12. PubMed DOI PMC
Macdonald-Fyall J., Xing D., Corbel M., Baillie S., Parton R., Coote J. Adjuvanticity of native and detoxified adenylate cyclase toxin of Bordetella pertussis towards co-administered antigens. Vaccine. 2004;22:4270–4281. doi: 10.1016/j.vaccine.2004.04.033. PubMed DOI
Orr B., Douce G., Baillie S., Parton R., Coote J. Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunization of mice. Vaccine. 2007;25:64–71. doi: 10.1016/j.vaccine.2006.07.019. PubMed DOI
Cheung G.Y., Xing D., Prior S., Corbel M.J., Parton R., Coote J.G. Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model. Infect. Immun. 2006;74:6797–6805. doi: 10.1128/IAI.01104-06. PubMed DOI PMC
Dadaglio G., Fayolle C., Zhang X., Ryffel B., Oberkampf M., Felix T., Hervas-Stubbs S., Osicka R., Sebo P., Ladant D., et al. Antigen targeting to CD11b+ dendritic cells in association with TLR4/TRIF signaling promotes strong CD8+ T cell responses. J. Immunol. 2014;193:1787–1798. doi: 10.4049/jimmunol.1302974. PubMed DOI
Svedova M., Masin J., Fiser R., Cerny O., Tomala J., Freudenberg M., Tuckova L., Kovar M., Dadaglio G., Adkins I., et al. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells. Immunol. Cell Biol. 2016;94:322–333. doi: 10.1038/icb.2015.87. PubMed DOI
Simsova M., Sebo P., Leclerc C. The adenylate cyclase toxin from Bordetella pertussis—A novel promising vehicle for antigen delivery to dendritic cells. Int. J. Med. Microbiol. 2004;293:571–576. doi: 10.1078/1438-4221-00291. PubMed DOI
Adkins I., Holubova J., Kosova M., Sadilkova L. Bacteria and their toxins tamed for immunotherapy. Curr. Pharm. Biotechnol. 2012;13:1446–1473. doi: 10.2174/138920112800784835. PubMed DOI
Sebo P., Fayolle C., d’Andria O., Ladant D., Leclerc C., Ullmann A. Cell-invasive activity of epitope-tagged adenylate cyclase of Bordetella pertussis allows in vitro presentation of a foreign epitope to CD8+ cytotoxic T cells. Infect. Immun. 1995;63:3851–3857. PubMed PMC
Gmira S., Karimova G., Ladant D. Characterization of recombinant Bordetella pertussis adenylate cyclase toxins carrying passenger proteins. Res. Microbiol. 2001;152:889–900. doi: 10.1016/S0923-2508(01)01272-4. PubMed DOI
Préville X., Ladant D., Timmerman B., Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res. 2005;65:641–649. PubMed
Holubova J., Kamanova J., Jelinek J., Tomala J., Masin J., Kosova M., Stanek O., Bumba L., Michalek J., Kovar M., et al. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect. Immun. 2012;80:1181–1192. doi: 10.1128/IAI.05711-11. PubMed DOI PMC
Van Damme P., Bouillette-Marussig M., Hens A., De Coster I., Depuydt C., Goubier A., Van Tendeloo V., Cools N., Goossens H., Hercend T., et al. GTL001, A Therapeutic Vaccine for Women Infected with Human Papillomavirus 16 or 18 and Normal Cervical Cytology: Results of a Phase I Clinical Trial. Clin. Cancer Res. 2016;22:3238–3248. doi: 10.1158/1078-0432.CCR-16-0085. PubMed DOI
Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation
Bordetella Type III Secretion Injectosome and Effector Proteins