G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
16-0290
Worldwide Cancer Research - United Kingdom
PubMed
29323491
PubMed Central
PMC6148440
DOI
10.1021/acs.jmedchem.7b01672
Knihovny.cz E-zdroje
- MeSH
- antiparazitární látky chemie farmakologie toxicita MeSH
- buněčné linie MeSH
- dánio pruhované MeSH
- G-kvadruplexy účinky léků MeSH
- genom protozoální genetika MeSH
- imidy chemie farmakologie toxicita MeSH
- lidé MeSH
- ligandy MeSH
- naftaleny chemie farmakologie toxicita MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiparazitární látky MeSH
- imidy MeSH
- ligandy MeSH
- naftaleny MeSH
- naphthalenediimide MeSH Prohlížeč
G-quadruplexes (G4) are DNA secondary structures that take part in the regulation of gene expression. Putative G4 forming sequences (PQS) have been reported in mammals, yeast, bacteria, and viruses. Here, we present PQS searches on the genomes of T. brucei, L. major, and P. falciparum. We found telomeric sequences and new PQS motifs. Biophysical experiments showed that EBR1, a 29 nucleotide long highly repeated PQS in T. brucei, forms a stable G4 structure. G4 ligands based on carbohydrate conjugated naphthalene diimides (carb-NDIs) that bind G4's including hTel could bind EBR1 with selectivity versus dsDNA. These ligands showed important antiparasitic activity. IC50 values were in the nanomolar range against T. brucei with high selectivity against MRC-5 human cells. Confocal microscopy confirmed these ligands localize in the nucleus and kinetoplast of T. brucei suggesting they can reach their potential G4 targets. Cytotoxicity and zebrafish toxicity studies revealed sugar conjugation reduces intrinsic toxicity of NDIs.
CNRS 5290 IRD 224 University of Montpellier INSERM 34394 Montpellier France
Department of Chemistry University of Pavia Via Taramelli 10 27100 Pavia Italy
Institute of Biophysics AS CR v v i Kralovopolska 135 612 65 Brno Czech Republic
Zobrazit více v PubMed
Huppert J. L.; Bugaut A.; Kumari S.; Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 2008, 36 (19), 6260–6268. 10.1093/nar/gkn511. PubMed DOI PMC
Huppert J. L. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 2008, 37 (7), 1375–1384. 10.1039/b702491f. PubMed DOI
Balasubramanian S.; Neidle S. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009, 13 (3), 345–353. 10.1016/j.cbpa.2009.04.637. PubMed DOI PMC
Neidle S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 2009, 19 (3), 239–250. 10.1016/j.sbi.2009.04.001. PubMed DOI
Bedrat A.; Lacroix L.; Mergny J. L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016, 44 (4), 1746–1759. 10.1093/nar/gkw006. PubMed DOI PMC
Chambers V. S.; Marsico G.; Boutell J. M.; Di Antonio M.; Smith G. P.; Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33 (8), 877–881. 10.1038/nbt.3295. PubMed DOI
Huppert J. L.; Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005, 33 (9), 2908–2916. 10.1093/nar/gki609. PubMed DOI PMC
Kwok C. K.; Merrick C. J. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol. 2017, 35 (10), 997–1013. 10.1016/j.tibtech.2017.06.012. PubMed DOI
Rodriguez R.; Miller K. M.; Forment J. V.; Bradshaw C. R.; Nikan M.; Britton S.; Oelschlaegel T.; Xhemalce B.; Balasubramanian S.; Jackson S. P. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 2012, 8 (3), 301–310. 10.1038/nchembio.780. PubMed DOI PMC
Kruisselbrink E.; Guryev V.; Brouwer K.; Pontier D. B.; Cuppen E.; Tijsterman M. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 2008, 18 (12), 900–905. 10.1016/j.cub.2008.05.013. PubMed DOI
Koole W.; van Schendel R.; Karambelas A. E.; van Heteren J. T.; Okihara K. L.; Tijsterman M. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun. 2014, 5, 3216.10.1038/ncomms4216. PubMed DOI
Castillo Bosch P.; Segura-Bayona S.; Koole W.; van Heteren J. T.; Dewar J. M.; Tijsterman M.; Knipscheer P. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J. 2014, 33 (21), 2521–2533. 10.15252/embj.201488663. PubMed DOI PMC
Ohnmacht S. A.; Neidle S. Small-molecule quadruplex-targeted drug discovery. Bioorg. Med. Chem. Lett. 2014, 24 (12), 2602–2612. 10.1016/j.bmcl.2014.04.029. PubMed DOI
Mendoza O.; Bourdoncle A.; Boule J. B.; Brosh R. M. Jr.; Mergny J. L. G-quadruplexes and helicases. Nucleic Acids Res. 2016, 44 (5), 1989–2006. 10.1093/nar/gkw079. PubMed DOI PMC
Sarkies P.; Reams C.; Simpson L. J.; Sale J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 2010, 40 (5), 703–713. 10.1016/j.molcel.2010.11.009. PubMed DOI PMC
Verma A.; Halder K.; Halder R.; Yadav V. K.; Rawal P.; Thakur R. K.; Mohd F.; Sharma A.; Chowdhury S. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J. Med. Chem. 2008, 51 (18), 5641–5649. 10.1021/jm800448a. PubMed DOI
Hershman S. G.; Chen Q.; Lee J. Y.; Kozak M. L.; Yue P.; Wang L. S.; Johnson F. B. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 2008, 36 (1), 144–156. 10.1093/nar/gkm986. PubMed DOI PMC
Johnson J. E.; Smith J. S.; Kozak M. L.; Johnson F. B. In vivo veritas: Using yeast to probe the biological functions of G-quadruplexes. Biochimie 2008, 90 (8), 1250–1263. 10.1016/j.biochi.2008.02.013. PubMed DOI PMC
Rawal P.; Kummarasetti V. B.; Ravindran J.; Kumar N.; Halder K.; Sharma R.; Mukerji M.; Das S. K.; Chowdhury S. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 2006, 16 (5), 644–655. 10.1101/gr.4508806. PubMed DOI PMC
Wieland M.; Hartig J. S. Investigation of mRNA quadruplex formation in Escherichia coli. Nat. Protoc. 2009, 4 (11), 1632–1640. 10.1038/nprot.2009.111. PubMed DOI
Perrone R.; Nadai M.; Frasson I.; Poe J. A.; Butovskaya E.; Smithgall T. E.; Palumbo M.; Palu G.; Richter S. N. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem. 2013, 56 (16), 6521–6530. 10.1021/jm400914r. PubMed DOI PMC
Rajendran A.; Endo M.; Hidaka K.; Tran P. L.; Mergny J. L.; Gorelick R. J.; Sugiyama H. HIV-1 nucleocapsid proteins as molecular chaperones for tetramolecular antiparallel G-quadruplex formation. J. Am. Chem. Soc. 2013, 135 (49), 18575–18585. 10.1021/ja409085j. PubMed DOI PMC
Amrane S.; Kerkour A.; Bedrat A.; Vialet B.; Andreola M. L.; Mergny J. L. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J. Am. Chem. Soc. 2014, 136 (14), 5249–5252. 10.1021/ja501500c. PubMed DOI
Artusi S.; Nadai M.; Perrone R.; Biasolo M. A.; Palu G.; Flamand L.; Calistri A.; Richter S. N. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res. 2015, 118, 123–131. 10.1016/j.antiviral.2015.03.016. PubMed DOI PMC
Harris L. M.; Merrick C. J. G-quadruplexes in pathogens: a common route to virulence control?. PLoS Pathog. 2015, 11 (2), e1004562.10.1371/journal.ppat.1004562. PubMed DOI PMC
Gardner M. J.; Hall N.; Fung E.; White O.; Berriman M.; Hyman R. W.; Carlton J. M.; Pain A.; Nelson K. E.; Bowman S.; Paulsen I. T.; James K.; Eisen J. A.; Rutherford K.; Salzberg S. L.; Craig A.; Kyes S.; Chan M. S.; Nene V.; Shallom S. J.; Suh B.; Peterson J.; Angiuoli S.; Pertea M.; Allen J.; Selengut J.; Haft D.; Mather M. W.; Vaidya A. B.; Martin D. M.; Fairlamb A. H.; Fraunholz M. J.; Roos D. S.; Ralph S. A.; McFadden G. I.; Cummings L. M.; Subramanian G. M.; Mungall C.; Venter J. C.; Carucci D. J.; Hoffman S. L.; Newbold C.; Davis R. W.; Fraser C. M.; Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002, 419 (6906), 498–511. 10.1038/nature01097. PubMed DOI PMC
Stanton A.; Harris L. M.; Graham G.; Merrick C. J. Recombination events among virulence genes in malaria parasites are associated with G-quadruplex-forming DNA motifs. BMC Genomics 2016, 17 (1), 859.10.1186/s12864-016-3183-3. PubMed DOI PMC
Smargiasso N.; Gabelica V.; Damblon C.; Rosu F.; De Pauw E.; Teulade-Fichou M. P.; Rowe J. A.; Claessens A. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes. BMC Genomics 2009, 10, 362.10.1186/1471-2164-10-362. PubMed DOI PMC
Bottius E.; Bakhsis N.; Scherf A. Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol. Cell. Biol. 1998, 18 (2), 919–925. 10.1128/MCB.18.2.919. PubMed DOI PMC
Dore E.; Pace T.; Ponzi M.; Scotti R.; Frontali C. Homologous telomeric sequences are present in different species of the genus Plasmodium. Mol. Biochem. Parasitol. 1986, 21 (2), 121–127. 10.1016/0166-6851(86)90015-0. PubMed DOI
Duraisingh M. T.; Voss T. S.; Marty A. J.; Duffy M. F.; Good R. T.; Thompson J. K.; Freitas-Junior L. H.; Scherf A.; Crabb B. S.; Cowman A. F. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 2005, 121 (1), 13–24. 10.1016/j.cell.2005.01.036. PubMed DOI
Freitas-Junior L. H.; Hernandez-Rivas R.; Ralph S. A.; Montiel-Condado D.; Ruvalcaba-Salazar O. K.; Rojas-Meza A. P.; Mancio-Silva L.; Leal-Silvestre R. J.; Gontijo A. M.; Shorte S.; Scherf A. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 2005, 121 (1), 25–36. 10.1016/j.cell.2005.01.037. PubMed DOI
Claessens A.; Hamilton W. L.; Kekre M.; Otto T. D.; Faizullabhoy A.; Rayner J. C.; Kwiatkowski D. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 2014, 10 (12), e1004812.10.1371/journal.pgen.1004812. PubMed DOI PMC
Scherf A.; Hernandez-Rivas R.; Buffet P.; Bottius E.; Benatar C.; Pouvelle B.; Gysin J.; Lanzer M. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 1998, 17 (18), 5418–5426. 10.1093/emboj/17.18.5418. PubMed DOI PMC
Blackburn E. H.; Challoner P. B. Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell 1984, 36 (2), 447–457. 10.1016/0092-8674(84)90238-1. PubMed DOI
Van der Ploeg L. H.; Liu A. Y.; Borst P. Structure of the growing telomeres of Trypanosomes. Cell 1984, 36 (2), 459–468. 10.1016/0092-8674(84)90239-3. PubMed DOI
Lanzer M.; Fischer K.; Le Blancq S. M. Parasitism and chromosome dynamics in protozoan parasites: is there a connection?. Mol. Biochem. Parasitol. 1995, 70 (1–2), 1–8. 10.1016/0166-6851(95)00021-R. PubMed DOI
Crozatier M.; Van der Ploeg L. H.; Johnson P. J.; Gommers-Ampt J.; Borst P. Structure of a telomeric expression site for variant specific surface antigens in Trypanosoma brucei. Mol. Biochem. Parasitol. 1990, 42 (1), 1–12. 10.1016/0166-6851(90)90107-W. PubMed DOI
Glover L.; Alsford S.; Horn D. DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. PLoS Pathog. 2013, 9 (3), e1003260.10.1371/journal.ppat.1003260. PubMed DOI PMC
Borst P.; Greaves D. R. Programmed gene rearrangements altering gene expression. Science 1987, 235 (4789), 658–67. 10.1126/science.3544215. PubMed DOI
Devlin R.; Marques C. A.; McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome?. Curr. Genet. 2017, 63 (3), 441–449. 10.1007/s00294-016-0662-7. PubMed DOI PMC
Benne R.; Van den Burg J.; Brakenhoff J. P.; Sloof P.; Van Boom J. H.; Tromp M. C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 1986, 46 (6), 819–826. 10.1016/0092-8674(86)90063-2. PubMed DOI
Leeder W. M.; Hummel N. F.; Goringer H. U. Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci. Rep. 2016, 6, 29810.10.1038/srep29810. PubMed DOI PMC
Cullen D. R.; Mocerino M. A Brief review of drug discovery research for human african Trypanosomiasis. Curr. Med. Chem. 2017, 24 (7), 701–717. 10.2174/0929867324666170120160034. PubMed DOI
Balasubramanian S.; Hurley L. H.; Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat. Rev. Drug Discovery 2011, 10 (4), 261–275. 10.1038/nrd3428. PubMed DOI PMC
Davis J. T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem., Int. Ed. 2004, 43 (6), 668–698. 10.1002/anie.200300589. PubMed DOI
Maji B.; Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem. Commun. 2014, 50 (49), 6422–6438. 10.1039/C4CC00611A. PubMed DOI
Xiong Y.-X.; Huang Z.-S.; Tan J.-H. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur. J. Med. Chem. 2015, 97, 538–551. 10.1016/j.ejmech.2014.11.021. PubMed DOI
Métifiot M.; Amrane S.; Mergny J.-L.; Andreola M.-L. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1. Biochimie 2015, 118, 173–175. 10.1016/j.biochi.2015.09.009. PubMed DOI
Perrone R.; Doria F.; Butovskaya E.; Frasson I.; Botti S.; Scalabrin M.; Lago S.; Grande V.; Nadai M.; Freccero M.; Richter S. N. Synthesis, binding and antiviral properties of potent core-extended naphthalene diimides targeting the HIV-1 long terminal repeat promoter G-quadruplexes. J. Med. Chem. 2015, 58 (24), 9639–9652. 10.1021/acs.jmedchem.5b01283. PubMed DOI PMC
Biswas B.; Kandpal M.; Vivekanandan P. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res. 2017, 45 (19), 11268–11280. 10.1093/nar/gkx823. PubMed DOI PMC
De Cian A.; Grellier P.; Mouray E.; Depoix D.; Bertrand H.; Monchaud D.; Teulade-Fichou M. P.; Mergny J. L.; Alberti P. Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. ChemBioChem 2008, 9 (16), 2730–2739. 10.1002/cbic.200800330. PubMed DOI
Guillon J.; Cohen A.; Gueddouda N. M.; Das R. N.; Moreau S.; Ronga L.; Savrimoutou S.; Basmaciyan L.; Monnier A.; Monget M.; Rubio S.; Garnerin T.; Azas N.; Mergny J. L.; Mullie C.; Sonnet P. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. J. Enzyme Inhib. Med. Chem. 2017, 32 (1), 547–563. 10.1080/14756366.2016.1268608. PubMed DOI PMC
Calvo E. P.; Wasserman M. G-Quadruplex ligands: Potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum. Mol. Biochem. Parasitol. 2016, 207 (1), 33–38. 10.1016/j.molbiopara.2016.05.009. PubMed DOI
Arevalo-Ruiz M.; Doria F.; Belmonte-Reche E.; De Rache A.; Campos-Salinas J.; Lucas R.; Falomir E.; Carda M.; Perez-Victoria J. M.; Mergny J. L.; Freccero M.; Morales J. C. Synthesis, binding properties, and differences in cell uptake of G-quadruplex ligands based on carbohydrate naphthalene diimide conjugates. Chem. - Eur. J. 2017, 23 (9), 2157–2164. 10.1002/chem.201604886. PubMed DOI
Calvaresi E. C.; Hergenrother P. J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 2013, 4 (6), 2319–2333. 10.1039/c3sc22205e. PubMed DOI PMC
Pohl J.; Bertram B.; Hilgard P.; Nowrousian M. R.; Stuben J.; Wiessler M. D-19575- a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother. Pharmacol. 1995, 35 (5), 364–370. 10.1007/s002800050248. PubMed DOI
Liu P.; Lu Y.; Gao X.; Liu R.; Zhang-Negrerie D.; Shi Y.; Wang Y.; Wang S.; Gao Q. Highly water-soluble platinum(II) complexes as GLUT substrates for targeted therapy: improved anticancer efficacy and transporter-mediated cytotoxic properties. Chem. Commun. 2013, 49 (24), 2421–2423. 10.1039/c3cc38589b. PubMed DOI
Burchmore R. J.; Landfear S. M. Differential regulation of multiple glucose transporter genes in Leishmania mexicana. J. Biol. Chem. 1998, 273 (44), 29118–29126. 10.1074/jbc.273.44.29118. PubMed DOI
Rodriguez-Contreras D.; Feng X.; Keeney K. M.; Bouwer H. G. A.; Landfear S. M. Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. Mol. Biochem. Parasitol. 2007, 153 (1), 9–18. 10.1016/j.molbiopara.2007.01.010. PubMed DOI PMC
Feng X.; Rodriguez-Contreras D.; Buffalo C.; Bouwer H. G. A.; Kruvand E.; Beverley S. M.; Landfear S. M. Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana. Mol. Microbiol. 2009, 71 (2), 369–381. 10.1111/j.1365-2958.2008.06531.x. PubMed DOI PMC
Rodríguez-Contreras D.; Landfear S. M. Metabolic Changes in Glucose Transporter-deficient Leishmania mexicana and Parasite Virulence. J. Biol. Chem. 2006, 281, 20068–20076. 10.1074/jbc.M603265200. PubMed DOI
Woodrow C. J.; Penny J. I.; Krishna S. Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J. Biol. Chem. 1999, 274 (11), 7272–7277. 10.1074/jbc.274.11.7272. PubMed DOI
Barrett M. P.; Tetaud E.; Seyfang A.; Bringaud F.; Baltz T. Trypanosome glucose transporters. Mol. Biochem. Parasitol. 1998, 91 (1), 195–205. 10.1016/S0166-6851(97)00192-8. PubMed DOI
Kikin O.; D’Antonio L.; Bagga P. S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006, 34 (Web Server), W676–W682. 10.1093/nar/gkl253. PubMed DOI PMC
Karsisiotis A. I.; Hessari N. M.; Novellino E.; Spada G. P.; Randazzo A.; Webba da Silva M. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism. Angew. Chem., Int. Ed. 2011, 50 (45), 10645–8. 10.1002/anie.201105193. PubMed DOI
Diveshkumar K. V.; Sakrikar S.; Harikrishna S.; Dhamodharan V.; Pradeepkumar P. I. Targeting promoter G-quadruplex DNAs by indenopyrimidine-based ligands. ChemMedChem 2014, 9 (12), 2754–2765. 10.1002/cmdc.201402394. PubMed DOI
Perrone R.; Nadai M.; Poe J. A.; Frasson I.; Palumbo M.; Palu G.; Smithgall T. E.; Richter S. N. Formation of a unique cluster of G-quadruplex structures in the HIV-1 Nef coding region: implications for antiviral activity. PLoS One 2013, 8 (8), e73121.10.1371/journal.pone.0073121. PubMed DOI PMC
Mergny J. L.; Li J.; Lacroix L.; Amrane S.; Chaires J. B. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005, 33 (16), e138.10.1093/nar/gni134. PubMed DOI PMC
Mergny J. L.; Phan A. T.; Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998, 435 (1), 74–78. 10.1016/S0014-5793(98)01043-6. PubMed DOI
Feigon J.; Koshlap K. M.; Smith F. W. 1H NMR spectroscopy of DNA triplexes and quadruplexes. Methods Enzymol. 1995, 261, 225–255. 10.1016/S0076-6879(95)61012-X. PubMed DOI
Sipes N. S.; Padilla S.; Knudsen T. B. Zebrafish: as an integrative model for twenty-first century toxicity testing. Birth Defects Res., Part C 2011, 93 (3), 256–267. 10.1002/bdrc.20214. PubMed DOI
Busquet F.; Strecker R.; Rawlings J. M.; Belanger S. E.; Braunbeck T.; Carr G. J.; Cenijn P.; Fochtman P.; Gourmelon A.; Hubler N.; Kleensang A.; Knobel M.; Kussatz C.; Legler J.; Lillicrap A.; Martinez-Jeronimo F.; Polleichtner C.; Rzodeczko H.; Salinas E.; Schneider K. E.; Scholz S.; van den Brandhof E. J.; van der Ven L. T.; Walter-Rohde S.; Weigt S.; Witters H.; Halder M. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul. Toxicol. Pharmacol. 2014, 69 (3), 496–511. 10.1016/j.yrtph.2014.05.018. PubMed DOI
Ledoux A.; St-Gelais A.; Cieckiewicz E.; Jansen O.; Bordignon A.; Illien B.; Di Giovanni N.; Marvilliers A.; Hoareau F.; Pendeville H.; Quetin-Leclercq J.; Frederich M. Antimalarial activities of alkyl cyclohexenone derivatives isolated from the leaves of Poupartia borbonica. J. Nat. Prod. 2017, 80 (6), 1750–1757. 10.1021/acs.jnatprod.6b01019. PubMed DOI
Teijeiro-Valino C.; Yebra-Pimentel E.; Guerra-Varela J.; Csaba N.; Alonso M. J.; Sanchez L. Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine 2017, 12 (17), 2069–2082. 10.2217/nnm-2017-0078. PubMed DOI
Ali S.; van Mil H. G. J.; Richardson M. K. Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 2011, 6 (6), e21076.10.1371/journal.pone.0021076. PubMed DOI PMC
Carvalho L.; Martinez-Garcia M.; Perez-Victoria I.; Manzano J. I.; Yardley V.; Gamarro F.; Perez-Victoria J. M. The oral antimalarial drug tafenoquine shows activity against Trypanosoma brucei. Antimicrob. Agents Chemother. 2015, 59 (10), 6151–6160. 10.1128/AAC.00879-15. PubMed DOI PMC
Raz B.; Iten M.; Grether-Buhler Y.; Kaminsky R.; Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997, 68 (2), 139–147. 10.1016/S0001-706X(97)00079-X. PubMed DOI
Perez-Victoria J. M.; Bavchvarov B. I.; Torrecillas I. R.; Martinez-Garcia M.; Lopez-Martin C.; Campillo M.; Castanys S.; Gamarro F. Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob. Agents Chemother. 2011, 55 (8), 3838–3844. 10.1128/AAC.00065-11. PubMed DOI PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65 (1–2), 55–63. 10.1016/0022-1759(83)90303-4. PubMed DOI
Desjardins R. E.; Canfield C. J.; Haynes J. D.; Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16 (6), 710–718. 10.1128/AAC.16.6.710. PubMed DOI PMC
Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites
The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria