Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
32628663
PubMed Central
PMC7365481
DOI
10.1371/journal.pgen.1008917
PII: PGENETICS-D-19-01988
Knihovny.cz E-zdroje
- MeSH
- aminochinoliny farmakologie MeSH
- G-kvadruplexy * MeSH
- genom účinky léků MeSH
- kyseliny pikolinové farmakologie MeSH
- lidé MeSH
- malárie farmakoterapie genetika parazitologie MeSH
- nukleotidové motivy genetika MeSH
- Plasmodium falciparum genetika patogenita MeSH
- promotorové oblasti (genetika) genetika MeSH
- regulace genové exprese účinky léků MeSH
- ribozomy účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminochinoliny MeSH
- kyseliny pikolinové MeSH
- pyridostatin MeSH Prohlížeč
Mechanisms of transcriptional control in malaria parasites are still not fully understood. The positioning patterns of G-quadruplex (G4) DNA motifs in the parasite's AT-rich genome, especially within the var gene family which encodes virulence factors, and in the vicinity of recombination hotspots, points towards a possible regulatory role of G4 in gene expression and genome stability. Here, we carried out the most comprehensive genome-wide survey, to date, of G4s in the Plasmodium falciparum genome using G4Hunter, which identifies G4 forming sequences (G4FS) considering their G-richness and G-skewness. We show an enrichment of G4FS in nucleosome-depleted regions and in the first exon of var genes, a pattern that is conserved within the closely related Laverania Plasmodium parasites. Under G4-stabilizing conditions, i.e., following treatment with pyridostatin (a high affinity G4 ligand), we show that a bona fide G4 found in the non-coding strand of var promoters modulates reporter gene expression. Furthermore, transcriptional profiling of pyridostatin-treated parasites, shows large scale perturbations, with deregulation affecting for instance the ApiAP2 family of transcription factors and genes involved in ribosome biogenesis. Overall, our study highlights G4s as important DNA secondary structures with a role in Plasmodium gene expression regulation, sub-telomeric recombination and var gene biology.
ARNA Laboratory IECB CNRS UMR5320 INSERM U1212 Bordeaux University Pessac France
IBENS Ecole Normale Supérieure CNRS Inserm PSL Research University Paris France
Institute of Biophysics of the Czech Academy of Sciences Czech Republic
Laboratory of Pathogen Host Interactions UMR5235 CNRS Montpellier University Montpellier France
MIVEGEC UMR IRD 224 CNRS 5290 Montpellier University Montpellier France
Zobrazit více v PubMed
WHO. World malaria report 2018. WHO website. 2018. http://www.who.int/malaria/publications/world-malaria-report-2018/report/en/
Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003;1: E5 10.1371/journal.pbio.0000005 PubMed DOI PMC
van Noort V, Huynen MA. Combinatorial gene regulation in Plasmodium falciparum. Trends Genet. 2006;22: 73–8. 10.1016/j.tig.2005.12.002 PubMed DOI
Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol. 2008;62: 445–470. 10.1146/annurev.micro.61.080706.093134 PubMed DOI
Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, et al. Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics. 2007;8: 45 10.1186/1471-2164-8-45 PubMed DOI PMC
Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Rayavara K, et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature. 2013;499: 223–227. 10.1038/nature12361 PubMed DOI PMC
Lopez-Rubio J-J, Mancio-Silva L, Scherf A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe. 2009;5: 179–190. 10.1016/j.chom.2008.12.012 PubMed DOI
Wang C, Adapa SR, Gibbons J, Sutton S, Jiang RHY. Punctuated chromatin states regulate Plasmodium falciparum antigenic variation at the intron and 2 kb upstream regions. BMC Genomics. 2016;17: 652 10.1186/s12864-016-3005-7 PubMed DOI PMC
Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N, Yavin E, et al. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci. 2015;112: E982–E991. 10.1073/pnas.1420855112 PubMed DOI PMC
Rowe JA, Claessens A, Corrigan RA, Arman M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med. 2009;11: e16 10.1017/S1462399409001082 PubMed DOI PMC
Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012;13: 770–780. 10.1038/nrg3296 PubMed DOI PMC
Maizels N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol. 2006;13: 1055–1059. 10.1038/nsmb1171 PubMed DOI
Maizels N, Gray LT. The G4 genome. PLoS Genet. 2013;9: e1003468 10.1371/journal.pgen.1003468 PubMed DOI PMC
Hänsel-Hertsch R, Beraldi D, Lensing S V, Marsico G, Zyner K, Parry A, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48: 1267–1272. 10.1038/ng.3662 PubMed DOI
Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18: 279–284. 10.1038/nrm.2017.3 PubMed DOI
Rodriguez R, Miller KM, Forment J V, Bradshaw CR, Nikan M, Britton S, et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol. 2012;8: 301–310. 10.1038/nchembio.780 PubMed DOI PMC
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci. 2002;99: 11593–11598. 10.1073/pnas.182256799 PubMed DOI PMC
Zaug AJ, Podell ER, Cech TR. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci. 2005;102: 10864–10869. 10.1073/pnas.0504744102 PubMed DOI PMC
Shahid R, Bugaut A, Balasubramanian S. The BCL-2 5′ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry. 2010;49: 8300–8306. 10.1021/bi100957h PubMed DOI PMC
Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov. 2011;10: 261–275. 10.1038/nrd3428 PubMed DOI PMC
Neidle S. Quadruplex Nucleic Acids as Novel Therapeutic Targets. J Med Chem. 2016;59: 5987–6011. 10.1021/acs.jmedchem.5b01835 PubMed DOI
Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, et al. Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 2009;69: 7653–7661. 10.1158/0008-5472.CAN-09-1304 PubMed DOI
Capra JA, Paeschke K, Singh M, Zakian VA. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol. 2010;6: e1000861 10.1371/journal.pcbi.1000861 PubMed DOI PMC
Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, et al. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 2006;16: 644–655. 10.1101/gr.4508806 PubMed DOI PMC
Perrone R, Lavezzo E, Riello E, Manganelli R, Palu G, Toppo S, et al. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci Rep. 2017;7: 5743 10.1038/s41598-017-05867-z PubMed DOI PMC
Garg R, Aggarwal J, Thakkar B. Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants. Sci Rep. 2016;6: 28211 10.1038/srep28211 PubMed DOI PMC
Lavezzo E, Berselli M, Frasson I, Perrone R, Palù G, Brazzale AR, et al. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLoS Comput Biol. 2018;14: e1006675 10.1371/journal.pcbi.1006675 PubMed DOI PMC
Belmonte-Reche E, Martinez-Garcia M, Guedin A, Zuffo M, Arevalo-Ruiz M, Doria F, et al. G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents. J Med Chem. 2018;61: 1231–1240. 10.1021/acs.jmedchem.7b01672 PubMed DOI PMC
Smargiasso N, Gabelica V, Damblon C, Rosu F, De Pauw E, Teulade-Fichou MP, et al. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes. BMC Genomics. 2009;10: 362 10.1186/1471-2164-10-362 PubMed DOI PMC
Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol. 2015;33: 877–881. 10.1038/nbt.3295 PubMed DOI
Marsico G, Chambers VS, Sahakyan AB, McCauley P, Boutell JM, Di Antonio M, et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019;47: 3862–3874. 10.1093/nar/gkz179 PubMed DOI PMC
Cahoon LA, Seifert HS. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science (80-). 2009;325: 764–767. 10.1126/science.1175653 PubMed DOI PMC
Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E, Smithgall TE, et al. A Dynamic G-quadruplex region regulates the HIV-1 Long terminal repeat promoter. J Med Chem. 2013;56: 6521–6530. 10.1021/jm400914r PubMed DOI PMC
Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, et al. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol. 2014;10: 358–364. 10.1038/nchembio.1479 PubMed DOI PMC
Biswas B, Kandpal M, Jauhari UK, Vivekanandan P. Genome-wide analysis of G-quadruplexes in herpesvirus genomes. BMC Genomics. 2016;17: 949 10.1186/s12864-016-3282-1 PubMed DOI PMC
Harris LM, Monsell KR, Noulin F, Toyin Famodimu M, Smargiasso N, Damblon C, et al. G-quadruplex DNA motifs in the malaria parasite Plasmodium falciparum and their potential as novel antimalarial drug targets. Antimicrob Agents Chemother. 2018;62: e01828–17. 10.1128/AAC.01828-17 PubMed DOI PMC
Anas M, Sharma R, Dhamodharan V, Pradeepkumar PI, Manhas A, Srivastava K, et al. Investigating Pharmacological Targeting of G-Quadruplexes in the Human Malaria Parasite. Biochemistry. 2017;56: 6691–6699. 10.1021/acs.biochem.7b00964 PubMed DOI
Guillon J, Cohen A, Das RN, Boudot C, Gueddouda NM, Moreau S, et al. Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives. Chem Biol Drug Des. 2018;91: 974–995. 10.1111/cbdd.13164 PubMed DOI
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;19: 498–511. 10.1038/nature01097 PubMed DOI PMC
Stanton A, Harris LM, Graham G, Merrick CJ. Recombination events among virulence genes in malaria parasites are associated with G-quadruplex-forming DNA motifs. BMC Genomics. 2016;17: 859 10.1186/s12864-016-3183-3 PubMed DOI PMC
Bedrat A, Lacroix L, Mergny JL. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44: 1746–1759. 10.1093/nar/gkw006 PubMed DOI PMC
Claessens A, Harris LM, Stanojcic S, Chappell L, Stanton A, Kuk N, et al. RecQ helicases in the malaria parasite Plasmodium falciparum affect genome stability, gene expression patterns and DNA replication dynamics. PLoS Genet. 2018;14: e1007490 10.1371/journal.pgen.1007490 PubMed DOI PMC
Bhartiya D, Chawla V, Ghosh S, Shankar R, Kumar N. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum. Genomics. 2016;108: 224–231. 10.1016/j.ygeno.2016.10.004 PubMed DOI
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33: 2908–2916. 10.1093/nar/gki609 PubMed DOI PMC
Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34: W676–W682. 10.1093/nar/gkl253 PubMed DOI PMC
Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37: D539–543. 10.1093/nar/gkn814 PubMed DOI PMC
Saad M, Guédin A, Amor S, Bedrat A, Tourasse NJ, Fayyad-Kazan H, et al. Mapping and characterization of G-quadruplexes in the genome of the social amoeba Dictyostelium discoideum. Nucleic Acids Res. 2019;47: 4363–4374. 10.1093/nar/gkz196 PubMed DOI PMC
Guédin A, Lin LY, Armane S, Lacroix L, Mergny J-L, Thore S, et al. Quadruplexes in ‘Dicty’: crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome. Nucleic Acids Res. 2018;46: 5297–5307. 10.1093/nar/gky290 PubMed DOI PMC
Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res. 2018;46: 9414–9431. 10.1093/nar/gky643 PubMed DOI PMC
Adjalley SH, Chabbert CD, Klaus B, Pelechano V, Steinmetz LM. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum. Cell Rep. 2016;14: 2463–2475. 10.1016/j.celrep.2016.02.025 PubMed DOI PMC
Calvo EP, Wasserman M. G-Quadruplex ligands: Potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum. Mol Biochem Parasitol. 2016;207: 33–38. 10.1016/j.molbiopara.2016.05.009 PubMed DOI
De Cian A, Grellier P, Mouray E, Depoix D, Bertrand H, Monchaud D, et al. Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. Chembiochem. 2008;9: 2730–9. 10.1002/cbic.200800330 PubMed DOI
Rask TS, Hansen DA, Theander TG, Pedersen AG, Lavstsen T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes—divide and conquer. PLoS Comput Biol. 2010;6 10.1371/journal.pcbi.1000933 PubMed DOI PMC
Otto TD, Gilabert A, Crellen T, Böhme U, Arnathau C, Sanders M, et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol. 2018;3: 687–697. 10.1038/s41564-018-0162-2 PubMed DOI PMC
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37: W202–W208. 10.1093/nar/gkp335 PubMed DOI PMC
Ribeyre C, Lopes J, Boulé J-B, Piazza A, Guédin A, Zakian VA, et al. The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo. Cohen-Fix O, editor. PLoS Genet. 2009;5: e1000475 10.1371/journal.pgen.1000475 PubMed DOI PMC
del Villar-Guerra R, Trent JO, Chaires JB. G-Quadruplex Secondary Structure Obtained from Circular Dichroism Spectroscopy. Angew Chemie—Int Ed. 2018;57: 7171–7175. 10.1002/anie.201709184 PubMed DOI PMC
Mergny JL, Li J, Lacroix L, Amrane S, Chaires JB. Thermal difference spectra: A specific signature for nucleic acid structures. Nucleic Acids Res. 2005;33: e138 10.1093/nar/gni134 PubMed DOI PMC
De La Faverie AR, Guédin A, Bedrat A, Yatsunyk LA, Mergny JL. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014;42: e65 10.1093/nar/gku111 PubMed DOI PMC
Lam EY, Beraldi D, Tannahill D, Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun. 2013;4: 1796 10.1038/ncomms2792 PubMed DOI PMC
Frank M, Deitsch K. Activation, silencing and mutually exclusive expression within the var gene family of Plasmodium falciparum. Int J Parasitol. 2006;36: 975–985. 10.1016/j.ijpara.2006.05.007 PubMed DOI
Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16: 710–8. 10.1128/aac.16.6.710 PubMed DOI PMC
Painter HJ, Campbell TL, Llinás M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol. 2011;176: 1–7. 10.1016/j.molbiopara.2010.11.014 PubMed DOI PMC
Eddy J, Maizels N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res. 2008;36: 1321–33. 10.1093/nar/gkm1138 PubMed DOI PMC
Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007. 10.1093/nar/gkl1057 PubMed DOI PMC
Smestad JA, Maher LJ. Relationships between putative G-quadruplex-forming sequences, RecQ helicases, and transcription. BMC Med Genet. 2015;16: 91 10.1186/s12881-015-0236-4 PubMed DOI PMC
Huppert JL, Bugaut A, Kumari S, Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 2008;36: 6260–6268. 10.1093/nar/gkn511 PubMed DOI PMC
Claessens A, Hamilton WL, Kekre M, Otto TD, Faizullabhoy A, Rayner JC, et al. Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis. PLoS Genet. 2014;10: e1004812 10.1371/journal.pgen.1004812 PubMed DOI PMC
Bopp SER, Manary MJ, Bright AT, Johnston GL, Dharia N V., Luna FL, et al. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genet. 2013;9: e1003293 10.1371/journal.pgen.1003293 PubMed DOI PMC
Verma A, Yadav VK, Basundra R, Kumar A, Chowdhury S. Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells. Nucleic Acids Res. 2009;37: 4194–4204. 10.1093/nar/gkn1076 PubMed DOI PMC
Halder R, Riou JF, Teulade-Fichou MP, Frickey T, Hartig JS. Bisquinolinium compounds induce quadruplex-specific transcriptome changes in HeLa S3 cell lines. BMC Res Notes. 2012;5: 138 10.1186/1756-0500-5-138 PubMed DOI PMC
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for Computing and Annotating Genomic Ranges. Prlic A, editor. PLoS Comput Biol. 2013;9: e1003118 10.1371/journal.pcbi.1003118 PubMed DOI PMC
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25: 1841–1842. 10.1093/bioinformatics/btp328 PubMed DOI PMC
Kensche PR, Hoeijmakers WAM, Toenhake CG, Bras M, Chappell L, Berriman M, et al. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences. Nucleic Acids Res. 2015;44: 2110–2124. 10.1093/nar/gkv1214 PubMed DOI PMC
Sims D, Ilott NE, Sansom SN, Sudbery IM, Johnson JS, Fawcett KA, et al. CGAT: Computational genomics analysis toolkit. Bioinformatics. 2014;30: 1290–1291. 10.1093/bioinformatics/btt756 PubMed DOI PMC
Lelièvre J, Berry A, Benoit-Vical F. An alternative method for Plasmodium culture synchronization. Exp Parasitol. 2005;109: 195–197. 10.1016/j.exppara.2004.11.012 PubMed DOI
Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65: 418–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/383936 PubMed
Wu Y, Sifri CD, Lei HH, Su XZ, Wellems TE. Transfection of Plasmodium falciparum within human red blood cells. Proc Natl Acad Sci U S A. 1995;92: 973–7. 10.1073/pnas.92.4.973 PubMed DOI PMC
Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW. Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA. 2009;15: 116–27. 10.1261/rna.1080109 PubMed DOI PMC
Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK, Arnot DE, et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol. 2003;49: 179–191. 10.1046/j.1365-2958.2003.03570.x PubMed DOI
Dzikowski R, Frank M, Deitsch K. Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production. PLoS Pathog. 2006;2: e22 10.1371/journal.ppat.0020022 PubMed DOI PMC
Siegel TN, Hon CC, Zhang Q, Lopez-Rubio JJ, Scheidig-Benatar C, Martins RM, et al. Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum. BMC Genomics. 2014;15: 150 10.1186/1471-2164-15-150 PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550 10.1186/s13059-014-0550-8 PubMed DOI PMC