Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay

. 2021 Feb 15 ; 12 (2) : . [epub] 20210215

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672023

P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at C-terminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and N-terminal truncated P53 family α isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites.

Zobrazit více v PubMed

Lane D.P., Crawford L.V. T Antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–263. doi: 10.1038/278261a0. PubMed DOI

Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.-C., Valent A., Minty A., Chalon P., Lelias J.-M., Dumont X., et al. Monoallelically expressed gene related to P53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–819. doi: 10.1016/S0092-8674(00)80540-1. PubMed DOI

Yang A., Kaghad M., Wang Y., Gillett E., Fleming M.D., Dötsch V., Andrews N.C., Caput D., McKeon F. P63, a P53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998;2:305–316. doi: 10.1016/S1097-2765(00)80275-0. PubMed DOI

Collavin L., Lunardi A., Del Sal G. P53-family proteins and their regulators: Hubs and spokes in tumor suppression. Cell Death Differ. 2010;17:901–911. doi: 10.1038/cdd.2010.35. PubMed DOI

Wei J., Zaika E., Zaika A. P53 family: Role of protein isoforms in human cancer. J. Nucleic Acids. 2012;2012:687359. doi: 10.1155/2012/687359. PubMed DOI PMC

Bourdon J.-C. P53 family isoforms. CPB. 2007;8:332–336. doi: 10.2174/138920107783018444. PubMed DOI PMC

Malkin D. Li-Fraumeni syndrome. Genes Cancer. 2011;2:475–484. doi: 10.1177/1947601911413466. PubMed DOI PMC

Mills A.A., Zheng B., Wang X.-J., Vogel H., Roop D.R., Bradley A. P63 is a P53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–713. doi: 10.1038/19531. PubMed DOI

Rinne T., Brunner H.G., van Bokhoven H. P63-associated disorders. Cell Cycle. 2007;6:262–268. doi: 10.4161/cc.6.3.3796. PubMed DOI

Rufini A., Agostini M., Grespi F., Tomasini R., Sayan B.S., Niklison-Chirou M.V., Conforti F., Velletri T., Mastino A., Mak T.W., et al. P73 in cancer. Genes Cancer. 2011;2:491–502. doi: 10.1177/1947601911408890. PubMed DOI PMC

Nemajerova A., Moll U.M. Tissue-specific roles of P73 in development and homeostasis. J. Cell Sci. 2019;132:jcs233338. doi: 10.1242/jcs.233338. PubMed DOI PMC

Menendez D., Inga A., Resnick M.A. The expanding universe of P53 targets. Nat. Rev. Cancer. 2009;9:724–737. doi: 10.1038/nrc2730. PubMed DOI

Riley T., Sontag E., Chen P., Levine A. Transcriptional control of human P53-regulated genes. Nat. Rev. Mol. Cell Biol. 2008;9:402–412. doi: 10.1038/nrm2395. PubMed DOI

El-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. Definition of a consensus binding site for P53. Nat. Genet. 1992;1:45–49. doi: 10.1038/ng0492-45. PubMed DOI

Brandt T., Petrovich M., Joerger A.C., Veprintsev D.B. Conservation of DNA-binding specificity and oligomerisation properties within the P53 family. BMC Genom. 2009;10:628. doi: 10.1186/1471-2164-10-628. PubMed DOI PMC

Perez C.A., Ott J., Mays D.J., Pietenpol J.A. P63 Consensus DNA-binding site: Identification, analysis and application into a P63MH algorithm. Oncogene. 2007;26:7363–7370. doi: 10.1038/sj.onc.1210561. PubMed DOI

Osada M., Park H.L., Nagakawa Y., Yamashita K., Fomenkov A., Kim M.S., Wu G., Nomoto S., Trink B., Sidransky D. Differential recognition of response elements determines target gene specificity Forp53 and P63. MCB. 2005;25:6077–6089. doi: 10.1128/MCB.25.14.6077-6089.2005. PubMed DOI PMC

Moll U.M., Slade N. P63 and P73: Roles in development and tumor formation. Mol. Cancer Res. 2004;2:371–386. PubMed

Zheng X., Chen X. Aquaporin 3, a glycerol and water transporter, is regulated by P73 of the P53 family. FEBS Lett. 2001;489:4–7. doi: 10.1016/S0014-5793(00)02437-6. PubMed DOI

Nakagawa T., Takahashi M., Ozaki T., Watanabe K., Todo S., Mizuguchi H., Hayakawa T., Nakagawara A. Autoinhibitory regulation of P73 by ΔNp73 to modulate cell survival and death through a P73-specific target element within the ΔNp73 promoter. MCB. 2002;22:2575–2585. doi: 10.1128/MCB.22.8.2575-2585.2002. PubMed DOI PMC

Sasaki Y., Ishida S., Morimoto I., Yamashita T., Kojima T., Kihara C., Tanaka T., Imai K., Nakamura Y., Tokino T. The P53 family member genes are involved in the notch signal pathway. J. Biol. Chem. 2002;277:719–724. doi: 10.1074/jbc.M108080200. PubMed DOI

Harms K., Nozell S., Chen X. The common and distinct target genes of the P53 family transcription factors. Cell. Mol. Life Sci. 2004;61:822–842. doi: 10.1007/s00018-003-3304-4. PubMed DOI PMC

Brázda V., Coufal J. Recognition of local DNA structures by P53 protein. Int. J. Mol. Sci. 2017;18:375. doi: 10.3390/ijms18020375. PubMed DOI PMC

Jagelská E.B., Brázda V., Pečinka P., Paleček E., Fojta M. DNA Topology influences P53 sequence-specific DNA binding through structural transitions within the target sites. Biochem. J. 2008;412:57–63. doi: 10.1042/BJ20071648. PubMed DOI

Coufal J., Jagelská E.B., Liao J.C.C., Brázda V. Preferential binding of P53 tumor suppressor to P21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem. Biophys. Res. Commun. 2013;441:83–88. doi: 10.1016/j.bbrc.2013.10.015. PubMed DOI

Petr M., Helma R., Polášková A., Krejčí A., Dvořáková Z., Kejnovská I., Navrátilová L., Adámik M., Vorlíčková M., Brázdová M. Wild-type P53 binds to MYC promoter G-quadruplex. Biosci. Rep. 2016;36:e00397. doi: 10.1042/BSR20160232. PubMed DOI PMC

Brázda V., Fojta M. The rich world of P53 DNA binding targets: The role of DNA structure. Int. J. Mol. Sci. 2019;20:5605. doi: 10.3390/ijms20225605. PubMed DOI PMC

Quante T., Otto B., Brázdová M., Kejnovská I., Deppert W., Tolstonog G.V. Mutant P53 is a transcriptional co-factor that binds to g-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle. 2012;11:3290–3303. doi: 10.4161/cc.21646. PubMed DOI PMC

Kennedy B.K. Mammalian transcription factors in yeast: Strangers in a familiar land. Nat. Rev. Mol. Cell Biol. 2002;3:41–49. doi: 10.1038/nrm704. PubMed DOI

Schärer E., lggo R. Mammalian P53 can function as a transcription factor in yeast. Nucleic Acids Res. 1992;20:1539–1545. doi: 10.1093/nar/20.7.1539. PubMed DOI PMC

Sharma V., Monti P., Fronza G., Inga A. Human transcription factors in yeast: The fruitful examples of P53 and NF-KB. FEMS Yeast Res. 2016;16:fow083. doi: 10.1093/femsyr/fow083. PubMed DOI

Storici F., Lewis L.K., Resnick M.A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biotechnol. 2001;19:773–776. doi: 10.1038/90837. PubMed DOI

Monti P., Bosco B., Gomes S., Saraiva L., Fronza G., Inga A. Yeast as a chassis for developing functional assays to study human P53. J. Vis. Exp. 2019;150 doi: 10.3791/59071. PubMed DOI

Porubiaková O., Bohálová N., Inga A., Vadovičová N., Coufal J., Fojta M., Brázda V. The influence of quadruplex structure in proximity to P53 target sequences on the transactivation potential of P53 alpha isoforms. Int. J. Mol. Sci. 2019;21:127. doi: 10.3390/ijms21010127. PubMed DOI PMC

Storici F., Resnick M.A. Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. Genet. Eng. N. Y. 2003;25:189–207. PubMed

Resnick M.A., Inga A. Functional mutants of the sequence-specific transcription factor P53 and implications for master genes of diversity. Proc. Natl. Acad. Sci. USA. 2003;100:9934–9939. doi: 10.1073/pnas.1633803100. PubMed DOI PMC

Inga A., Storici F., Darden T.A., Resnick M.A. Differential transactivation by the P53 transcription factor is highly dependent on P53 level and promoter target sequence. MCB. 2002;22:8612–8625. doi: 10.1128/MCB.22.24.8612-8625.2002. PubMed DOI PMC

Andreotti V., Ciribilli Y., Monti P., Bisio A., Lion M., Jordan J., Fronza G., Menichini P., Resnick M.A., Inga A. P53 Transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. PLoS ONE. 2011;6:e20643. doi: 10.1371/journal.pone.0020643. PubMed DOI PMC

Monti P., Russo D., Bocciardi R., Foggetti G., Menichini P., Divizia M.T., Lerone M., Graziano C., Wischmeijer A., Viadiu H., et al. EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences. Hum. Mutat. 2013;34:894–904. doi: 10.1002/humu.22304. PubMed DOI

Ciribilli Y., Monti P., Bisio A., Nguyen H.T., Ethayathulla A.S., Ramos A., Foggetti G., Menichini P., Menendez D., Resnick M.A., et al. Transactivation specificity is conserved among P53 family proteins and depends on a response element sequence code. Nucleic Acids Res. 2013;41:8637–8653. doi: 10.1093/nar/gkt657. PubMed DOI PMC

Monti P., Ciribilli Y., Bisio A., Foggetti G., Raimondi I., Campomenosi P., Menichini P., Fronza G., Inga A. ∆N-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget. 2014;5:2116–2130. doi: 10.18632/oncotarget.1845. PubMed DOI PMC

Monti P., Lionetti M., De Luca G., Menichini P., Recchia A.G., Matis S., Colombo M., Fabris S., Speciale A., Barbieri M., et al. Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: Results of the O-CLL1 study in early stage patients. Sci. Rep. 2020;10:18427. doi: 10.1038/s41598-020-75364-3. PubMed DOI PMC

Monti P., Perfumo C., Bisio A., Ciribilli Y., Menichini P., Russo D., Umbach D.M., Resnick M.A., Inga A., Fronza G. Dominant-negative features of mutant TP53 in germline carriers have limited impact on cancer outcomes. Mol. Cancer Res. 2011;9:271–279. doi: 10.1158/1541-7786.MCR-10-0496. PubMed DOI PMC

Zhang Y., Coillie S.V., Fang J.-Y., Xu J. Gain of function of mutant P53: R282W on the peak? Oncogenesis. 2016;5:e196. doi: 10.1038/oncsis.2016.8. PubMed DOI PMC

Ko L.J., Prives C. P53: Puzzle and paradigm. Genes Dev. 1996;10:1054–1072. doi: 10.1101/gad.10.9.1054. PubMed DOI

Monti P., Campomenosi P., Ciribilli Y., Iannone R., Inga A., Abbondandolo A., Resnick M.A., Fronza G. Tumour P53 mutations exhibit promoter selective dominance over wild type P53. Oncogene. 2002;21:1641–1648. doi: 10.1038/sj.onc.1205250. PubMed DOI

Dötsch V., Bernassola F., Coutandin D., Candi E., Melino G. P63 and P73, the ancestors of P53. Cold Spring Harb. Perspect. Biol. 2010;2:a004887. doi: 10.1101/cshperspect.a004887. PubMed DOI PMC

Ferraiuolo M., Di Agostino S., Blandino G., Strano S. Oncogenic intra-P53 family member interactions in human cancers. Front. Oncol. 2016;6:77. doi: 10.3389/fonc.2016.00077. PubMed DOI PMC

Kitayner M., Rozenberg H., Rohs R., Suad O., Rabinovich D., Honig B., Shakked Z. Diversity in DNA recognition by P53 revealed by crystal structures with hoogsteen base pairs. Nat. Struct. Mol. Biol. 2010;17:423–429. doi: 10.1038/nsmb.1800. PubMed DOI PMC

Beno I., Rosenthal K., Levitine M., Shaulov L., Haran T.E. Sequence-dependent cooperative binding of P53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res. 2011;39:1919–1932. doi: 10.1093/nar/gkq1044. PubMed DOI PMC

Senitzki A., Safieh J., Sharma V., Golovenko D., Danin-Poleg Y., Inga A., Haran T.E. The complex architecture of P53 binding sites. Nucleic Acids Res. 2021 doi: 10.1093/nar/gkaa1283. PubMed DOI PMC

Lipps H.J., Rhodes D. G-quadruplex structures: In vivo evidence and function. Trends Cell Biol. 2009;19:414–422. doi: 10.1016/j.tcb.2009.05.002. PubMed DOI

Marsico G., Chambers V.S., Sahakyan A.B., McCauley P., Boutell J.M., Antonio M.D., Balasubramanian S. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019;47:3862–3874. doi: 10.1093/nar/gkz179. PubMed DOI PMC

Spiegel J., Adhikari S., Balasubramanian S. The structure and function of DNA G-quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC

Huppert J.L. Structure, location and interactions of G-quadruplexes. FEBS J. 2010;277:3452–3458. doi: 10.1111/j.1742-4658.2010.07758.x. PubMed DOI

Capra J.A., Paeschke K., Singh M., Zakian V.A. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput. Biol. 2010;6:e1000861. doi: 10.1371/journal.pcbi.1000861. PubMed DOI PMC

Huppert J.L. Hunting G-quadruplexes. Biochimie. 2008;90:1140–1148. doi: 10.1016/j.biochi.2008.01.014. PubMed DOI

Morris M.J., Basu S. An unusually stable G-quadruplex within the 5′-UTR of the MT3 matrix metalloproteinase MRNA represses translation in eukaryotic cells. Biochemistry. 2009;48:5313–5319. doi: 10.1021/bi900498z. PubMed DOI

Agarwala P., Pandey S., Mapa K., Maiti S. The G-quadruplex augments translation in the 5′ untranslated region of transforming growth factor Β2. Biochemistry. 2013;52:1528–1538. doi: 10.1021/bi301365g. PubMed DOI

Dumas L., Herviou P., Dassi E., Cammas A., Millevoi S. G-quadruplexes in RNA biology: Recent advances and future directions. Trends Biochem. Sci. 2020 doi: 10.1016/j.tibs.2020.11.001. PubMed DOI

Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Hároníková L., Coufal J., Kejnovská I., Jagelská E.B., Fojta M., Dvořáková P., Muller P., Vojtesek B., Brázda V. IFI16 preferentially binds to DNA with quadruplex structure and enhances DNA quadruplex formation. PLoS ONE. 2016;11:e0157156. doi: 10.1371/journal.pone.0157156. PubMed DOI PMC

Dhamodharan V., Pradeepkumar P.I. Specific recognition of promoter G-quadruplex DNAs by small molecule ligands and light-up probes. ACS Chem. Biol. 2019;14:2102–2114. doi: 10.1021/acschembio.9b00475. PubMed DOI

Kharel P., Balaratnam S., Beals N., Basu S. The role of RNA G-quadruplexes in human diseases and therapeutic strategies. WIREs RNA. 2020;11:e1568. doi: 10.1002/wrna.1568. PubMed DOI

Chaudhuri R., Bhattacharya S., Dash J., Bhattacharya S. Recent update on targeting c-MYC G-quadruplexes by small molecules for anticancer therapeutics. J. Med. Chem. 2020;64:42–70. doi: 10.1021/acs.jmedchem.0c01145. PubMed DOI

Sanchez-Martin V., Lopez-Pujante C., Soriano-Rodriguez M., Garcia-Salcedo J.A. An updated focus on quadruplex structures as potential therapeutic targets in cancer. Int. J. Mol. Sci. 2020;21:8900. doi: 10.3390/ijms21238900. PubMed DOI PMC

Asamitsu S., Yabuki Y., Ikenoshita S., Wada T., Shioda N. Pharmacological prospects of G-quadruplexes for neurological diseases using porphyrins. Biochem. Biophys. Res. Commun. 2020;531:51–55. doi: 10.1016/j.bbrc.2020.01.054. PubMed DOI

Kawauchi K., Urano R., Kinoshita N., Kuwamoto S., Torii T., Hashimoto Y., Taniguchi S., Tsuruta M., Miyoshi D. Photosensitizers based on G-quadruplex ligand for cancer photodynamic therapy. Genes. 2020;11:1340. doi: 10.3390/genes11111340. PubMed DOI PMC

Bedrat A., Lacroix L., Mergny J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Lago S., Nadai M., Ruggiero E., Tassinari M., Marušič M., Tosoni B., Frasson I., Cernilogar F.M., Pirota V., Doria F., et al. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res. 2021;49:847–863. doi: 10.1093/nar/gkaa1273. PubMed DOI PMC

Da Ros S., Nicoletto G., Rigo R., Ceschi S., Zorzan E., Dacasto M., Giantin M., Sissi C. G-quadruplex modulation of SP1 functional binding sites at the KIT proximal promoter. Int. J. Mol. Sci. 2020;22:329. doi: 10.3390/ijms22010329. PubMed DOI PMC

Brázda V., Hároníková L., Liao J., Fojta M. DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC

Gazanion E., Lacroix L., Alberti P., Gurung P., Wein S., Cheng M., Mergny J.-L., Gomes A.R., Lopez-Rubio J.-J. Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet. 2020;16:e1008917. doi: 10.1371/journal.pgen.1008917. PubMed DOI PMC

Chashchina G.V., Beniaminov A.D., Kaluzhny D.N. Stable G-quadruplex structures of oncogene promoters induce potassium-dependent stops of thermostable DNA polymerase. Biochem. Mosc. 2019;84:562–569. doi: 10.1134/S0006297919050109. PubMed DOI

Nguyen T.-A.T., Grimm S.A., Bushel P.R., Li J., Li Y., Bennett B.D., Lavender C.A., Ward J.M., Fargo D.C., Anderson C.W., et al. Revealing a human P53 universe. Nucleic Acids Res. 2018;46:8153–8167. doi: 10.1093/nar/gky720. PubMed DOI PMC

Kartasheva N.N., Lenz-Bauer C., Hartmann O., Schäfer H., Eilers M., Dobbelstein M. ΔNp73 can modulate the expression of various genes in a P53-independent fashion. Oncogene. 2003;22:8246–8254. doi: 10.1038/sj.onc.1207138. PubMed DOI

King K.E., Ponnamperuma R.M., Yamashita T., Tokino T., Lee L.A., Young M.F., Weinberg W.C. ΔNp63α functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene. 2003;22:3635–3644. doi: 10.1038/sj.onc.1206536. PubMed DOI

Kazantseva M., Mehta S., Eiholzer R.A., Hung N., Wiles A., Slatter T.L., Braithwaite A.W. A Mouse model of the Δ133p53 isoform: Roles in cancer progression and inflammation. Mamm. Genome. 2018;29:831–842. doi: 10.1007/s00335-018-9758-3. PubMed DOI

Ghioni P., Bolognese F., Duijf P.H.G., van Bokhoven H., Mantovani R., Guerrini L. Complex transcriptional effects of P63 isoforms: Identification of novel activation and repression domains. MCB. 2002;22:8659–8668. doi: 10.1128/MCB.22.24.8659-8668.2002. PubMed DOI PMC

Barton C.E., Johnson K.N., Mays D.M., Boehnke K., Shyr Y., Boukamp P., Pietenpol J.A. Novel P63 target genes involved in paracrine signaling and keratinocyte differentiation. Cell Death Dis. 2010;1:e74. doi: 10.1038/cddis.2010.49. PubMed DOI PMC

Dohn M., Zhang S., Chen X. P63α and ΔNp63α can induce cell cycle arrest and apoptosis and differentially regulate P53 target genes. Oncogene. 2001;20:3193–3205. doi: 10.1038/sj.onc.1204427. PubMed DOI

Romano R.-A., Ortt K., Birkaya B., Smalley K., Sinha S. An active role of the ΔN isoform of P63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS ONE. 2009;4:e5623. doi: 10.1371/journal.pone.0005623. PubMed DOI PMC

Wu G., Osada M., Guo Z., Fomenkov A., Begum S., Zhao M., Upadhyay S., Xing M., Wu F., Moon C., et al. DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res. 2005;65:758–766. PubMed

Higashikawa K., Yoneda S., Tobiume K., Saitoh M., Taki M., Mitani Y., Shigeishi H., Ono S., Kamata N. ΔNp63α-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. Int. J. Cancer. 2009;124:2837–2844. doi: 10.1002/ijc.24280. PubMed DOI

Kommagani R., Leonard M.K., Lewis S., Romano R.-A., Sinha S., Kadakia M.P. Regulation of VDR by Np63 is associated with inhibition of cell invasion. J. Cell Sci. 2009;122:2828–2835. doi: 10.1242/jcs.049619. PubMed DOI PMC

del Mundo I.M.A., Vasquez K.M., Wang G. Modulation of DNA structure formation using small molecules. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:118539. doi: 10.1016/j.bbamcr.2019.118539. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...