Recognition of Local DNA Structures by p53 Protein
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28208646
PubMed Central
PMC5343910
DOI
10.3390/ijms18020375
PII: ijms18020375
Knihovny.cz E-zdroje
- Klíčová slova
- local DNA structures, p53 protein, protein-DNA interactions,
- MeSH
- B-DNA MeSH
- DNA chemie genetika metabolismus MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- B-DNA MeSH
- DNA MeSH
- nádorový supresorový protein p53 MeSH
- triplex DNA MeSH Prohlížeč
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
Zobrazit více v PubMed
Goh A.M., Coffill C.R., Lane D.P. The role of mutant p53 in human cancer. J. Pathol. 2011;223:116–126. doi: 10.1002/path.2784. PubMed DOI
Meek D.W. Regulation of the p53 response and its relationship to cancer. Biochem. J. 2015;469:325–346. doi: 10.1042/BJ20150517. PubMed DOI
Vousden K.H., Lane D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007;8:275–283. doi: 10.1038/nrm2147. PubMed DOI
Lohrum M.A., Vousden K.H. Regulation and activation of p53 and its family members. Cell Death Differ. 1999;6:1162–1168. doi: 10.1038/sj.cdd.4400625. PubMed DOI
Zhao Y., Chen X.Q., Du J.Z. Cellular adaptation to hypoxia and p53 transcription regulation. J. Zhejiang Univ. Sci. B. 2009;10:404–410. doi: 10.1631/jzus.B0820293. PubMed DOI PMC
Itoh Y., Murata A., Sakamoto S., Nanatani K., Wada T., Takahashi S., Kamagata K. Activation of p53 facilitates the target search in DNA by enhancing the target recognition probability. J. Mol. Biol. 2016;428:2916–2930. doi: 10.1016/j.jmb.2016.06.001. PubMed DOI
Watson J.D., Crick F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Choi J., Majima T. Conformational changes of non-B DNA. Chem. Soc. Rev. 2011;40:5893–5909. doi: 10.1039/c1cs15153c. PubMed DOI
Palecek E. Local supercoil-stabilized DNA structures. Crit. Rev. Biochem. Mol. Biol. 1991;26:151–226. doi: 10.3109/10409239109081126. PubMed DOI
Van Holde K., Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays. 1994;16:59–68. doi: 10.1002/bies.950160110. PubMed DOI
Wells R.D. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 2007;32:271–278. doi: 10.1016/j.tibs.2007.04.003. PubMed DOI
Cer R.Z., Bruce K.H., Donohue D.E., Temiz N.A., Mudunuri U.S., Yi M., Volfovsky N., Bacolla A., Luke B.T., Collins J.R., et al. Current Protocols in Human Genetics. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool) pp. 1–22. PubMed PMC
Chasovskikh S., Dimtchev A., Smulson M., Dritschilo A. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A. 2005;68:21–27. doi: 10.1002/cyto.a.20187. PubMed DOI
Limanskaia O. Species-specific detection of Mycobacterium tuberculosis complex. Probl. Tuberk. Bolezn. Legk. 2009;10:49–55. PubMed
Mikheikin A.L., Lushnikov A.Y., Lyubchenko Y.L. Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry. 2006;45:12998–13006. doi: 10.1021/bi061002k. PubMed DOI PMC
Pearson C.E., Zorbas H., Price G.B., Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. J. Cell. Biochem. 1996;63:1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI
Werbowy K., Cieslinski H., Kur J. Characterization of a cryptic plasmid pSFKW33 from Shewanella sp. 33B. Plasmid. 2009;62:44–49. doi: 10.1016/j.plasmid.2009.03.003. PubMed DOI
Brazda V., Kolomaznik J., Lysek J., Haronikova L., Coufal J., St’astny J. Palindrome analyser—A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Cer R.Z., Bruce K.H., Mudunuri U.S., Yi M., Volfovsky N., Luke B.T., Bacolla A., Collins J.R., Stephens R.M. Non-B DB: A database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res. 2011;39:D383–D391. doi: 10.1093/nar/gkq1170. PubMed DOI PMC
Aranda A., Perez-Ortin J.E., Benham C.J., Del Olmo M.L. Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin. Yeast. 1997;13:313–326. doi: 10.1002/(SICI)1097-0061(19970330)13:4<313::AID-YEA93>3.0.CO;2-8. PubMed DOI
Kurahashi H., Inagaki H., Yamada K., Ohye T., Taniguchi M., Emanuel B.S., Toda T. Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J. Biol. Chem. 2004;279:35377–35383. doi: 10.1074/jbc.M400354200. PubMed DOI PMC
Lyubchenko Y.L. DNA structure and dynamics: An atomic force microscopy study. Cell Biochem. Biophys. 2004;41:75–98. doi: 10.1385/CBB:41:1:075. PubMed DOI
Shlyakhtenko L.S., Potaman V.N., Sinden R.R., Lyubchenko Y.L. Structure and dynamics of supercoil-stabilized DNA cruciforms. J. Mol. Biol. 1998;280:61–72. doi: 10.1006/jmbi.1998.1855. PubMed DOI
Shlyakhtenko L.S., Hsieh P., Grigoriev M., Potaman V.N., Sinden R.R., Lyubchenko Y.L. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J. Mol. Biol. 2000;296:1169–1173. doi: 10.1006/jmbi.2000.3542. PubMed DOI
Panayotatos N., Fontaine A. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J. Biol. Chem. 1987;262:11364–11368. PubMed
Yamaguchi K., Yamaguchi M. The replication origin of pSC101: The nucleotide sequence and replication functions of the ori region. Gene. 1984;29:211–219. PubMed
Brazda V., Laister R.C., Jagelska E.B., Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Manelyte L., Strohner R., Gross T., Langst G. Chromatin targeting signals, nucleosome positioning mechanism and non-coding RNA-mediated regulation of the chromatin remodeling complex NoRC. PLoS Genet. 2014;10:e1004157. doi: 10.1371/journal.pgen.1004157. PubMed DOI PMC
Yahyaoui W., Callejo M., Price G.B., Zannis-Hadjopoulos M. Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast. BMC Mol. Biol. 2007;8:27. doi: 10.1186/1471-2199-8-27. PubMed DOI PMC
Muller A., Marins M., Kamisugi Y., Meyer P. Analysis of hypermethylation in the RPS element suggests a signal function for short inverted repeats in de novo methylation. Plant Mol. Biol. 2002;48:383–399. doi: 10.1023/A:1014091131490. PubMed DOI
Gentry M., Hennig L. A structural bisulfite assay to identify DNA cruciforms. Mol. Plant. 2016;9:1328–1336. doi: 10.1016/j.molp.2016.06.003. PubMed DOI
Frank-Kamenetskii M.D., Mirkin S.M. Triplex DNA structures. Annu. Rev. Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. PubMed DOI
Mukherjee A., Vasquez K.M. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie. 2011;93:1197–1208. doi: 10.1016/j.biochi.2011.04.001. PubMed DOI PMC
Lee H.T., Khutsishvili I., Marky L.A. DNA complexes containing joined triplex and duplex motifs: Melting behavior of intramolecular and bimolecular complexes with similar sequences. J. Phys. Chem. B. 2010;114:541–548. doi: 10.1021/jp9084074. PubMed DOI
Bacolla A., Wells R.D. Non-B DNA conformations as determinants of mutagenesis and human disease. Mol. Carcinog. 2009;48:273–285. doi: 10.1002/mc.20507. PubMed DOI
Schroth G.P., Ho P.S. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res. 1995;23:1977–1983. doi: 10.1093/nar/23.11.1977. PubMed DOI PMC
Wu Q., Gaddis S.S., MacLeod M.C., Walborg E.F., Thames H.D., di Giovanni J., Vasquez K.M. High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes. Mol. Carcinog. 2007;46:15–23. doi: 10.1002/mc.20261. PubMed DOI
Bacolla A., Collins J.R., Gold B., Chuzhanova N., Yi M., Stephens R.M., Stefanov S., Olsh A., Jakupciak J.P., Dean M., et al. Long homopurine·homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucleic Acids Res. 2006;34:2663–2675. doi: 10.1093/nar/gkl354. PubMed DOI PMC
Gorab E., Amabis J.M., Stocker A.J., Drummond L., Stollar B.D. Potential sites of triple-helical nucleic acid formation in chromosomes of Rhynchosciara (Diptera: Sciaridae) and Drosophila melanogaster. Chromosome Res. 2009;17:821–832. doi: 10.1007/s10577-009-9075-5. PubMed DOI
Hoyne P.R., Maher L.J., 3rd Functional studies of potential intrastrand triplex elements in the Escherichia coli genome. J. Mol. Biol. 2002;318:373–386. doi: 10.1016/S0022-2836(02)00041-4. PubMed DOI
Krasilnikova M.M., Mirkin S.M. Replication stalling at Friedreich’s ataxia (GAA)n repeats in vivo. Mol. Cell. Biol. 2004;24:2286–2295. doi: 10.1128/MCB.24.6.2286-2295.2004. PubMed DOI PMC
Mariappan S.V., Catasti P., Silks L.A., 3rd, Bradbury E.M., Gupta G. The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich’s ataxia. J. Mol. Biol. 1999;285:2035–2052. doi: 10.1006/jmbi.1998.2435. PubMed DOI
Rajeswari M.R. DNA triplex structures in neurodegenerative disorder, Friedreich’s ataxia. J. Biosci. 2012;37:519–532. doi: 10.1007/s12038-012-9219-1. PubMed DOI
Jain A., Rajeswari M.R., Ahmed F. Formation and thermodynamic stability of intermolecular (R*R·Y) DNA triplex in GAA/TTC repeats associated with Freidreich’s ataxia. J. Biomol. Struct. Dyn. 2002;19:691–699. doi: 10.1080/07391102.2002.10506775. PubMed DOI
Bowater R.P., Wells R.D. The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. Prog. Nucleic Acid. Res. Mol. Biol. 2001;66:159–202. PubMed
Singh H.N., Rajeswari M.R. Role of long purine stretches in controlling the expression of genes associated with neurological disorders. Gene. 2015;572:175–183. doi: 10.1016/j.gene.2015.07.007. PubMed DOI
Bochman M.L., Paeschke K., Zakian V.A. DNA secondary structures: Stability and function of G-quadruplex structures. Nat. Rev. Genet. 2012;13:770–780. doi: 10.1038/nrg3296. PubMed DOI PMC
Neidle S., Parkinson G.N. Quadruplex DNA crystal structures and drug design. Biochimie. 2008;90:1184–1196. doi: 10.1016/j.biochi.2008.03.003. PubMed DOI
Gellert M., Lipsett M.N., Davies D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA. 1962;48:2013–2018. doi: 10.1073/pnas.48.12.2013. PubMed DOI PMC
Wang Y., Patel D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1:263–282. doi: 10.1016/0969-2126(93)90015-9. PubMed DOI
Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC
Kikin O., D’Antonio L., Bagga P.S. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–W682. doi: 10.1093/nar/gkl253. PubMed DOI PMC
Scaria V., Hariharan M., Arora A., Maiti S. Quadfinder: Server for identification and analysis of quadruplex-forming motifs in nucleotide sequences. Nucleic Acids Res. 2006;34:W683–W685. doi: 10.1093/nar/gkl299. PubMed DOI PMC
Kumari S., Bugaut A., Huppert J.L., Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 2007;3:218–221. doi: 10.1038/nchembio864. PubMed DOI PMC
Schaffitzel C., Berger I., Postberg J., Hanes J., Lipps H.J., Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. USA. 2001;98:8572–8577. PubMed PMC
Yang Q., Xiang J., Yang S., Zhou Q., Li Q., Tang Y., Xu G. Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. recognizing mixed G-quadruplex in human telomeres. Chem. Commun. 2009;9:1103–1105. doi: 10.1039/b820101c. PubMed DOI
De Cian A., Gros J., Guedin A., Haddi M., Lyonnais S., Guittat L., Riou J.F., Trentesaux C., Sacca B., Lacroix L., et al. DNA and RNA quadruplex ligands. Nucleic Acids Symp. Ser. 2008;52:7–8. doi: 10.1093/nass/nrn004. PubMed DOI
Eddy J., Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34:3887–3896. doi: 10.1093/nar/gkl529. PubMed DOI PMC
Eddy J., Maizels N. Selection for the G4 DNA motif at the 5’ end of human genes. Mol. Carcinog. 2009;48:319–325. doi: 10.1002/mc.20496. PubMed DOI PMC
Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–514. doi: 10.1016/S0092-8674(00)80760-6. PubMed DOI
Stansel R.M., de Lange T., Griffith J.D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 2001;20:5532–5540. doi: 10.1093/emboj/20.19.5532. PubMed DOI PMC
Murti K.G., Prescott D.M. Telomeres of polytene chromosomes in a ciliated protozoan terminate in duplex DNA loops. Proc. Natl. Acad. Sci. USA. 1999;96:14436–14439. doi: 10.1073/pnas.96.25.14436. PubMed DOI PMC
Munoz-Jordan J.L., Cross G.A., de Lange T., Griffith J.D. T-loops at trypanosome telomeres. EMBO J. 2001;20:579–588. doi: 10.1093/emboj/20.3.579. PubMed DOI PMC
Levine A.J. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi: 10.1016/S0092-8674(00)81871-1. PubMed DOI
Yang Y., Tantoso E., Chua G.H., Yeo Z.X., Ng F.S., Wong S.T., Chung C.W., Li K.B. In silico analysis of p53 using the p53 knowledgebase: Mutations, polymorphisms, microRNAs and pathways. In Silico Biol. 2007;7:61–75. PubMed
Joerger A.C., Fersht A.R. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 2008;77:557–582. doi: 10.1146/annurev.biochem.77.060806.091238. PubMed DOI
Joerger A.C., Fersht A.R. The tumor suppressor p53: From structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2010;2:a000919. doi: 10.1101/cshperspect.a000919. PubMed DOI PMC
Okorokov A.L., Orlova E.V. Structural biology of the p53 tumour suppressor. Curr. Opin. Struct. Biol. 2009;19:197–202. doi: 10.1016/j.sbi.2009.02.003. PubMed DOI
Petitjean A., Mathe E., Kato S., Ishioka C., Tavtigian S.V., Hainaut P., Olivier M. Impact of mutant p53 functional properties on Tp53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC Tp53 database. Hum. Mutat. 2007;28:622–629. doi: 10.1002/humu.20495. PubMed DOI
Qian H., Wang T., Naumovski L., Lopez C.D., Brachmann R.K. Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene. 2002;21:7901–7911. doi: 10.1038/sj.onc.1205974. PubMed DOI
El-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992;1:45–49. doi: 10.1038/ng0492-45. PubMed DOI
Balagurumoorthy P., Sakamoto H., Lewis M.S., Zambrano N., Clore G.M., Gronenborn A.M., Appella E., Harrington R.E. Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Proc. Natl. Acad. Sci. USA. 1995;92:8591–8595. doi: 10.1073/pnas.92.19.8591. PubMed DOI PMC
Weinberg R.L., Veprintsev D.B., Bycroft M., Fersht A.R. Comparative binding of p53 to its promoter and DNA recognition elements. J. Mol. Biol. 2005;348:589–596. doi: 10.1016/j.jmb.2005.03.014. PubMed DOI
Kim E., Albrechtsen N., Deppert W. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53. Oncogene. 1997;15:857–869. doi: 10.1038/sj.onc.1201412. PubMed DOI
Inga A., Storici F., Darden T.A., Resnick M.A. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol. Cell. Biol. 2002;22:8612–8625. doi: 10.1128/MCB.22.24.8612-8625.2002. PubMed DOI PMC
Ma B., Pan Y., Zheng J., Levine A.J., Nussinov R. Sequence analysis of p53 response-elements suggests multiple binding modes of the p53 tetramer to DNA targets. Nucleic Acids Res. 2007;35:2986–3001. doi: 10.1093/nar/gkm192. PubMed DOI PMC
Chen Y., Dey R., Chen L. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure. 2010;18:246–256. doi: 10.1016/j.str.2009.11.011. PubMed DOI PMC
Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P. Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science. 1994;265:346–355. doi: 10.1126/science.8023157. PubMed DOI
Gohler T., Reimann M., Cherny D., Walter K., Warnecke G., Kim E., Deppert W. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 2002;277:41192–41203. doi: 10.1074/jbc.M202344200. PubMed DOI
Jordan J.J., Menendez D., Inga A., Noureddine M., Bell D.A., Resnick M.A. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. PLoS Genet. 2008;4:e1000104. doi: 10.1371/annotation/13bc83be-2345-401d-b953-f1886e9fbdff. PubMed DOI PMC
McKinney K., Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 2002;22:6797–6808. doi: 10.1128/MCB.22.19.6797-6808.2002. PubMed DOI PMC
McKinney K., Mattia M., Gottifredi V., Prives C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell. 2004;16:413–424. doi: 10.1016/j.molcel.2004.09.032. PubMed DOI
Brazda V., Jagelska E.B., Fojta M., Palecek E. Searching for target sequences by p53 protein is influenced by DNA length. Biochem. Biophys. Res. Commun. 2006;341:470–477. doi: 10.1016/j.bbrc.2005.12.202. PubMed DOI
Murata A., Ito Y., Kashima R., Kanbayashi S., Nanatani K., Igarashi C., Okumura M., Inaba K., Tokino T., Takahashi S., et al. One-dimensional sliding of p53 along DNA is accelerated in the presence of Ca2+ or Mg2+ at millimolar concentrations. J. Mol. Biol. 2015;427:2663–2678. doi: 10.1016/j.jmb.2015.06.016. PubMed DOI
Tafvizi A., Huang F., Fersht A.R., Mirny L.A., van Oijen A.M. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. USA. 2011;108:563–568. doi: 10.1073/pnas.1016020107. PubMed DOI PMC
Leith J.S., Tafvizi A., Huang F., Uspal W.E., Doyle P.S., Fersht A.R., Mirny L.A., van Oijen A.M. Sequence-dependent sliding kinetics of p53. Proc. Natl. Acad. Sci. USA. 2012;109:16552–16557. doi: 10.1073/pnas.1120452109. PubMed DOI PMC
Terakawa T., Kenzaki H., Takada S. p53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains. J. Am. Chem. Soc. 2012;134:14555–14562. doi: 10.1021/ja305369u. PubMed DOI
Wei C.L., Wu Q., Vega V.B., Chiu K.P., Ng P., Zhang T., Shahab A., Yong H.C., Fu Y., Weng Z., et al. A global map of p53 transcription-factor binding sites in the human genome. Cell. 2006;124:207–219. doi: 10.1016/j.cell.2005.10.043. PubMed DOI
Veprintsev D.B., Fersht A.R. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Nucleic Acids Res. 2008;36:1589–1598. doi: 10.1093/nar/gkm1040. PubMed DOI PMC
Menendez D., Inga A., Resnick M.A. The expanding universe of p53 targets. Nat. Rev. Cancer. 2009;9:724–737. doi: 10.1038/nrc2730. PubMed DOI
Wang B., Xiao Z., Ren E.C. Redefining the p53 response element. Proc. Natl. Acad. Sci. USA. 2009;106:14373–14378. doi: 10.1073/pnas.0903284106. PubMed DOI PMC
Allen M.A., Andrysik Z., Dengler V.L., Mellert H.S., Guarnieri A., Freeman J.A., Sullivan K.D., Galbraith M.D., Luo X., Kraus W.L., et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. eLife. 2014;3:e02200. doi: 10.7554/eLife.02200. PubMed DOI PMC
Chang G.S., Chen X.A., Park B., Rhee H.S., Li P., Han K.H., Mishra T., Chan-Salis K.Y., Li Y., Hardison R.C., et al. A comprehensive and high-resolution genome-wide response of p53 to stress. Cell Rep. 2014;8:514–527. doi: 10.1016/j.celrep.2014.06.030. PubMed DOI PMC
Nagaich A.K., Appella E., Harrington R.E. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J. Biol. Chem. 1997;272:14842–14849. doi: 10.1074/jbc.272.23.14842. PubMed DOI
Nagaich A.K., Zhurkin V.B., Durell S.R., Jernigan R.L., Appella E., Harrington R.E. p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. Proc. Natl. Acad. Sci. USA. 1999;96:1875–1880. doi: 10.1073/pnas.96.5.1875. PubMed DOI PMC
Jordan J.J., Menendez D., Sharav J., Beno I., Rosenthal K., Resnick M.A., Haran T.E. Low-level p53 expression changes transactivation rules and reveals superactivating sequences. Proc. Natl. Acad. Sci. USA. 2012;109:14387–14392. doi: 10.1073/pnas.1205971109. PubMed DOI PMC
Petty T.J., Emamzadah S., Costantino L., Petkova I., Stavridi E.S., Saven J.G., Vauthey E., Halazonetis T.D. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 2011;30:2167–2176. doi: 10.1038/emboj.2011.127. PubMed DOI PMC
Tubbs J.L., Tainer J.A. p53 conformational switching for selectivity may reveal a general solution for specific DNA binding. EMBO J. 2011;30:2099–2100. doi: 10.1038/emboj.2011.133. PubMed DOI PMC
Demir O., Ieong P.U., Amaro R.E. Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene. 2016 doi: 10.1038/onc.2016.321. PubMed DOI PMC
Niederweis M., Hillen W. Electrophoretic analysis of protein-induced DNA bending and twist changes. Electrophoresis. 1993;14:693–698. doi: 10.1002/elps.11501401110. PubMed DOI
Palecek E., Vlk D., Stankova V., Brazda V., Vojtesek B., Hupp T.R., Schaper A., Jovin T.M. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15:2201–2209. doi: 10.1038/sj.onc.1201398. PubMed DOI
Brazdova M., Navratilova L., Tichy V., Nemcova K., Lexa M., Hrstka R., Pecinka P., Adamik M., Vojtesek B., Palecek E., et al. Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS ONE. 2013;8:e59567. doi: 10.1371/journal.pone.0059567. PubMed DOI PMC
Adamik M., Kejnovska I., Bazantova P., Petr M., Renciuk D., Vorlickova M., Brazdova M. p53 binds human telomeric G-quadruplex in vitro. Biochimie. 2016;128:83–91. doi: 10.1016/j.biochi.2016.07.004. PubMed DOI
Kim E., Rohaly G., Heinrichs S., Gimnopoulos D., Meissner H., Deppert W. Influence of promoter DNA topology on sequence-specific DNA binding and transactivation by tumor suppressor p53. Oncogene. 1999;18:7310–7318. doi: 10.1038/sj.onc.1203139. PubMed DOI
Jagelska E.B., Brazda V., Pecinka P., Palecek E., Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem. J. 2008;412:57–63. doi: 10.1042/BJ20071648. PubMed DOI
Palecek E., Brazda V., Jagelska E., Pecinka P., Karlovska L., Brazdova M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene. 2004;23:2119–2127. doi: 10.1038/sj.onc.1207324. PubMed DOI
Jagelska E.B., Pivonkova H., Fojta M., Brazda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem. Biophys. Res. Commun. 2010;391:1409–1414. doi: 10.1016/j.bbrc.2009.12.076. PubMed DOI
Coufal J., Jagelska E.B., Liao J.C., Brazda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem. Biophys. Res. Commun. 2013;441:83–88. doi: 10.1016/j.bbrc.2013.10.015. PubMed DOI
Brázda V., Čechová J., Battistin M., Coufal J., Jagelská E.B., Raimondi I., Inga A. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein. Biochem. Biophys. Res. Commun. 2017;483:516–521. doi: 10.1016/j.bbrc.2016.12.113. PubMed DOI
Degtyareva N., Subramanian D., Griffith J.D. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J. Biol. Chem. 2001;276:8778–8784. doi: 10.1074/jbc.M006795200. PubMed DOI
Kim E., Deppert W. The complex interactions of p53 with target DNA: We learn as we go. Biochem. Cell Biol. 2003;81:141–150. doi: 10.1139/o03-046. PubMed DOI
Stros M., Muselikova-Polanska E., Pospisilova S., Strauss F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry. 2004;43:7215–7225. doi: 10.1021/bi049928k. PubMed DOI
Subramanian D., Griffith J.D. p53 Monitors replication fork regression by binding to “chickenfoot” intermediates. J. Biol. Chem. 2005;280:42568–42572. doi: 10.1074/jbc.M506348200. PubMed DOI
Stansel R.M., Subramanian D., Griffith J.D. p53 binds telomeric single strand overhangs and T-loop junctions in vitro. J. Biol. Chem. 2002;277:11625–11628. doi: 10.1074/jbc.C100764200. PubMed DOI
Brazda V., Palecek J., Pospisilova S., Vojtesek B., Palecek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem. Biophys. Res. Commun. 2000;267:934–939. doi: 10.1006/bbrc.1999.2056. PubMed DOI
Palecek E., Brazdova M., Brazda V., Palecek J., Billova S., Subramaniam V., Jovin T.M. Binding of p53 and its core domain to supercoiled DNA. Eur. J. Biochem. 2001;268:573–581. doi: 10.1046/j.1432-1327.2001.01898.x. PubMed DOI
Lee S., Elenbaas B., Levine A., Griffith J. p53 and Its 14 kDa C-terminal domain recognize primary DNA-damage in the form of insertion deletion mismatches. Cell. 1995;81:1013–1020. doi: 10.1016/S0092-8674(05)80006-6. PubMed DOI
Cobb A.M., Jackson B.R., Kim E., Bond P.L., Bowater R.P. Sequence-specific and DNA structure-dependent interactions of Escherichia coli MutS and human p53 with DNA. Anal. Biochem. 2013;442:51–61. doi: 10.1016/j.ab.2013.07.033. PubMed DOI
Lee S., Cavallo L., Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J. Biol. Chem. 1997;272:7532–7539. doi: 10.1074/jbc.272.11.7532. PubMed DOI
Picksley S.M., Meek D.W., Lane D.P. The conformational change of a murine temperature-sensitive p53 protein is independent of a change in phosphorylation status. Oncogene. 1992;7:1649–1651. PubMed
Mazur S.J., Sakaguchi K., Appella E., Wang X.W., Harris C.C., Bohr V.A. Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J. Mol. Biol. 1999;292:241–249. doi: 10.1006/jmbi.1999.3064. PubMed DOI
Pivonkova H., Sebest P., Pecinka P., Ticha O., Nemcova K., Brazdova M., Jagelska E.B., Brazda V., Fojta M. Selective binding of tumor suppressor p53 protein to topologically constrained DNA: Modulation by intercalative drugs. Biochem. Biophys. Res. Commun. 2010;393:894–899. doi: 10.1016/j.bbrc.2010.02.120. PubMed DOI
Jett S.D., Cherny D.I., Subramaniam V., Jovin T.M. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. J. Mol. Biol. 2000;299:585–592. doi: 10.1006/jmbi.2000.3759. PubMed DOI
Cherny D.I., Striker G., Subramaniam V., Jett S.D., Palecek E., Jovin T.M. DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. J. Mol. Biol. 1999;294:1015–1026. doi: 10.1006/jmbi.1999.3299. PubMed DOI
Saramaki A., Banwell C.M., Campbell M.J., Carlberg C. Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res. 2006;34:543–554. doi: 10.1093/nar/gkj460. PubMed DOI PMC
Gaillard C., Strauss F. High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops. BMC Mol. Biol. 2000;1 doi: 10.1186/1471-2199-1-1. PubMed DOI PMC
Lee S.J., No Y.R., Dang D.T., Dang L.H., Yang V.W., Shim H., Yun C.C. Regulation of hypoxia-iinducible factor 1α (HIF-1α) by lysophosphatidic acid is dependent on interplay between p53 and Kruppel-like factor 5. J. Biol. Chem. 2013;288:25244–25253. doi: 10.1074/jbc.M113.489708. PubMed DOI PMC
Kasparkova J., Pospisilova S., Brabec V. Different recognition of DNA modified by aatitumor cisplatin and its clinically ineffective trans isomer by tumor suppressor protein p53. J. Biol. Chem. 2001;276:16064–16069. doi: 10.1074/jbc.M101224200. PubMed DOI
Bakalkin G., Yakovleva T., Selivanova G., Magnusson K.P., Szekely L., Kiseleva E., Klein G., Terenius L., Wiman K.G. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. USA. 1994;91:413–417. doi: 10.1073/pnas.91.1.413. PubMed DOI PMC
Thomas T.J., Faaland C.A., Gallo M.A., Thomas T. Suppression of c-myc oncogene expression by a polyamine-complexed triplex forming oligonucleotide in MCF-7 breast cancer cells. Nucleic Acids Res. 1995;23:3594–3599. doi: 10.1093/nar/23.17.3594. PubMed DOI PMC
Tichá O. Master’s Thesis. Masaryk University; Brno, Czech Republic: 2007. Influence of Superhelicity and Open Local Structure to DNA Interaction of Tumor Supresor Protein p53.
Brazdova M., Tichy V., Helma R., Bazantova P., Polaskova A., Krejci A., Petr M., Navratilova L., Ticha O., Nejedly K., et al. p53 specifically binds triplex DNA in vitro and in cells. PLoS ONE. 2016;11:e0167439. PubMed PMC
Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC
Haronikova L., Coufal J., Kejnovska I., Jagelska E.B., Fojta M., Dvorakova P., Muller P., Vojtesek B., Brazda V. IFI16 preferentially binds to DNA with quadruplex structure and enhances DNA quadruplex formation. PLoS ONE. 2016;11:e0157156. doi: 10.1371/journal.pone.0157156. PubMed DOI PMC
Gohler T., Jager S., Warnecke G., Yasuda H., Kim E., Deppert W. Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res. 2005;33:1087–1100. doi: 10.1093/nar/gki252. PubMed DOI PMC
Brazda V., Muller P., Brozkova K., Vojtesek B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem. Biophys. Res. Commun. 2006;351:499–506. doi: 10.1016/j.bbrc.2006.10.065. PubMed DOI
Quante T., Otto B., Brazdova M., Kejnovska I., Deppert W., Tolstonog G.V. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle. 2012;11:3290–3303. doi: 10.4161/cc.21646. PubMed DOI PMC
Brazdova M., Quante T., Togel L., Walter K., Loscher C., Tichy V., Cincarova L., Deppert W., Tolstonog G.V. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res. 2009;37:1486–1500. doi: 10.1093/nar/gkn1085. PubMed DOI PMC
Chicas A., Molina P., Bargonetti J. Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem. Biophys. Res. Commun. 2000;279:383–390. doi: 10.1006/bbrc.2000.3965. PubMed DOI
Sampath J., Sun D.X., Kidd V.J., Grenet J., Gandhi A., Shapiro L.H., Wang Q.J., Zambetti G.P., Schuetz J.D. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem. 2001;276:39359–39367. doi: 10.1074/jbc.M103429200. PubMed DOI
Petr M., Helma R., Polaskova A., Krejci A., Dvorakova Z., Kejnovska I., Navratilova L., Adamik M., Vorlickova M., Brazdova M. Wild-type p53 binds to MYC promoter G-quadruplex. Biosci. Rep. 2016;36:e00397. doi: 10.1042/BSR20160232. PubMed DOI PMC
Walter K., Warnecke G., Bowater R., Deppert W., Kim E. Tumor suppressor p53 binds with high affinity to CTG·CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. J. Biol. Chem. 2005;280:42497–42507. doi: 10.1074/jbc.M507038200. PubMed DOI
Kamada R., Toguchi Y., Nomura T., Imagawa T., Sakaguchi K. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 2016;106:598–612. doi: 10.1002/bip.22772. PubMed DOI
Chene P. The role of tetramerization in p53 function. Oncogene. 2001;20:2611–2617. doi: 10.1038/sj.onc.1204373. PubMed DOI
Oren M., Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2010;2:a001107. doi: 10.1101/cshperspect.a001107. PubMed DOI PMC
Strano S., Dell’Orso S., Mongiovi A.M., Monti O., Lapi E., Di Agostino S., Fontemaggi G., Blandino G. Mutant p53 proteins: Between loss and gain of function. Head Neck. 2007;29:488–496. doi: 10.1002/hed.20531. PubMed DOI
Noy A., Sutthibutpong T., Harris S.A. Protein/DNA interactions in complex DNA topologies: Expect the unexpected. Biophys. Rev. 2016;8:233–243. doi: 10.1007/s12551-016-0208-8. PubMed DOI PMC
Brazda V., Haronikova L., Liao J.C., Fojta M. DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC
Kim E., Deppert W. The versatile interactions of p53 with DNA: When flexibility serves specificity. Cell Death Differ. 2006;13:885–889. doi: 10.1038/sj.cdd.4401909. PubMed DOI
Deppert W. Binding of MAR-DNA elements by mutant p53: Possible implications for its oncogenic functions. J. Cell. Biochem. 1996;62:172–180. doi: 10.1002/(SICI)1097-4644(199608)62:2<172::AID-JCB5>3.0.CO;2-P. PubMed DOI
Will K., Warnecke G., Wiesmuller L., Deppert W. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc. Natl. Acad. Sci. USA. 1998;95:13681–13686. doi: 10.1073/pnas.95.23.13681. PubMed DOI PMC
Laptenko O., Tong D.R., Manfredi J., Prives C. The tail that wags the dog: How the disordered C-terminal domain controls the transcriptional activities of the p53 tumor-suppressor protein. Trends Biochem. Sci. 2016;41:1022–1034. doi: 10.1016/j.tibs.2016.08.011. PubMed DOI PMC
Kim E., Deppert W. Transcriptional activities of mutant p53: When mutations are more than a loss. J. Cell. Biochem. 2004;93:878–886. doi: 10.1002/jcb.20271. PubMed DOI
Tutton S., Azzam G.A., Stong N., Vladimirova O., Wiedmer A., Monteith J.A., Beishline K., Wang Z., Deng Z., Riethman H., et al. Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres. EMBO J. 2016;35:193–207. doi: 10.15252/embj.201490880. PubMed DOI PMC
Kenzelmann Broz D., Spano Mello S., Bieging K.T., Jiang D., Dusek R.L., Brady C.A., Sidow A., Attardi L.D. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013;27:1016–1031. doi: 10.1101/gad.212282.112. PubMed DOI PMC
Variability of Inverted Repeats in All Available Genomes of Bacteria
R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences
Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins
Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure
G4Hunter web application: a web server for G-quadruplex prediction
p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms