Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.
- MeSH
- antibakteriální látky MeSH
- Bacteria genetika MeSH
- bakteriální geny MeSH
- genom bakteriální MeSH
- mikrobiota * MeSH
- prasata MeSH
- přenos genů horizontální * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Infection control measures to prevent viral and bacterial infection spread are critical to maintaining a healthy environment. Pathogens such as viruses and pyogenic bacteria can cause infectious complications. Viruses such as SARS-CoV-2 are known to spread through the aerosol route and on fomite surfaces, lasting for a prolonged time in the environment. Developing technologies to mitigate the spread of pathogens through airborne routes and on surfaces is critical, especially for patients at high risk for infectious complications. Multifunctional coatings with a broad capacity to bind pathogens that result in inactivation can disrupt infectious spread through aerosol and inanimate surface spread. This study uses C-POLAR, a proprietary cationic, polyamine, organic polymer with a charged, dielectric property coated onto air filtration material and textiles. Using both SARS-CoV-2 live viral particles and bovine coronavirus models, C-POLAR-treated material shows a dramatic 2-log reduction in circulating viral inoculum. This reduction is consistent in a static room model, indicating simple airflow through a static C-POLAR hanging can capture significant airborne particles. Finally, Gram-positive and Gram-negative bacteria are applied to C-POLAR textiles using a viability indicator to demonstrate eradication on fomite surfaces. These data suggest that a cationic polymer surface can capture and eradicate human pathogens, potentially interrupting the infectious spread for a more resilient environment. IMPORTANCE: Infection control is critical for maintaining a healthy home, work, and hospital environment. We test a cationic polymer capable of capturing and eradicating viral and bacterial pathogens by applying the polymer to the air filtration material and textiles. The data suggest that the simple addition of cationic material can result in the improvement of an infectious resilient environment against viral and bacterial pathogens.
- MeSH
- aerosoly MeSH
- Bacteria účinky léků růst a vývoj MeSH
- Coronavirus bovis účinky léků MeSH
- COVID-19 * prevence a kontrola MeSH
- fomity mikrobiologie virologie MeSH
- gramnegativní bakterie účinky léků MeSH
- kationty * chemie farmakologie MeSH
- lidé MeSH
- polymery * farmakologie chemie MeSH
- SARS-CoV-2 * účinky léků MeSH
- skot MeSH
- textilie mikrobiologie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Microbial contamination in cultural heritage storage facilities is undoubtedly still a huge problem and leads to the biodeterioration of historical objects and thus the loss of information for future generations. Most studies focus on fungi that colonize materials, which are the primary agents of biodeterioration. However, bacteria also play crucial roles in this process. Therefore, this study focuses on identifying bacteria that colonize audio-visual materials and those present in the air in the archives of the Czech Republic. For our purposes, the Illumina MiSeq amplicon sequencing method was used. Using this method, 18 bacterial genera with an abundance of higher than 1% were identified on audio-visual materials and in the air. We also evaluated some factors that were assumed to possibly influence the composition of bacterial communities on audio-visual materials, of which locality was shown to be significant. Locality also explained most of the variability in bacterial community structure. Furthermore, an association between genera colonizing materials and genera present in the air was demonstrated, and indicator genera were evaluated for each locality. IMPORTANCE The existing literature on microbial contamination of audio-visual materials has predominantly used culture-based methods to evaluate contamination and has overlooked the potential impact of environmental factors and material composition on microbial communities. Furthermore, previous studies have mainly focused on contamination by microscopic fungi, neglecting other potentially harmful microorganisms. To address these gaps in knowledge, our study is the first to provide a comprehensive analysis of bacterial communities present on historical audio-visual materials. Our statistical analyses demonstrate the critical importance of including air analysis in such studies, as airborne microorganisms can significantly contribute to the contamination of these materials. The insights gained from this study are not only valuable in developing effective preventive measures to mitigate contamination but also valuable in identifying targeted disinfection methods for specific types of microorganisms. Overall, our findings highlight the need for a more holistic approach to understanding microbial contamination in cultural heritage materials.
- MeSH
- atmosféra MeSH
- Bacteria * genetika MeSH
- houby genetika MeSH
- mikrobiota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Noncanonical secondary structures in nucleic acids have been studied intensively in recent years. Important biological roles of cruciform structures formed by inverted repeats (IRs) have been demonstrated in diverse organisms, including humans. Using Palindrome analyser, we analyzed IRs in all accessible bacterial genome sequences to determine their frequencies, lengths, and localizations. IR sequences were identified in all species, but their frequencies differed significantly across various evolutionary groups. We detected 242,373,717 IRs in all 1,565 bacterial genomes. The highest mean IR frequency was detected in the Tenericutes (61.89 IRs/kbp) and the lowest mean frequency was found in the Alphaproteobacteria (27.08 IRs/kbp). IRs were abundant near genes and around regulatory, tRNA, transfer-messenger RNA (tmRNA), and rRNA regions, pointing to the importance of IRs in such basic cellular processes as genome maintenance, DNA replication, and transcription. Moreover, we found that organisms with high IR frequencies were more likely to be endosymbiotic, antibiotic producing, or pathogenic. On the other hand, those with low IR frequencies were far more likely to be thermophilic. This first comprehensive analysis of IRs in all available bacterial genomes demonstrates their genomic ubiquity, nonrandom distribution, and enrichment in genomic regulatory regions. IMPORTANCE Our manuscript reports for the first time a complete analysis of inverted repeats in all fully sequenced bacterial genomes. Thanks to the availability of unique computational resources, we were able to statistically evaluate the presence and localization of these important regulatory sequences in bacterial genomes. This work revealed a strong abundance of these sequences in regulatory regions and provides researchers with a valuable tool for their manipulation.
- MeSH
- Bacteria genetika MeSH
- fylogeneze MeSH
- genomika * MeSH
- lidé MeSH
- replikace DNA * MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of health care-associated infections. Additionally, over the decades, the spread of community-associated (CA-MRSA) clones has become a serious problem. The aim of this study was to gain data on the current epidemiology of MRSA in Slovakia. Between January 2020 and March 2020, single-patient MRSA isolates (invasive and/or colonizing) were collected in Slovakia from hospitalized inpatients (16 hospitals) or outpatients (77 cities). Isolates were characterized via antimicrobial susceptibility testing, spa typing, SCCmec typing, the detection of mecA/mecC, genes coding for Panton-Valentine leukocidin (PVL), and the arcA gene (part of the arginine catabolic mobile element [ACME]). Out of 412 isolates, 167 and 245 originated from hospitalized patients and outpatients, respectively. Inpatients were most likely older (P < 0.001) and carried a strain exhibiting multiple resistance (P = 0.015). Isolates were frequently resistant to erythromycin (n = 320), clindamycin (n = 268), and ciprofloxacin/norfloxacin (n = 261). 55 isolates were resistant to oxacillin/cefoxitin only. By clonal structure, CC5-MRSA-II (n = 106; spa types t003, t014), CC22-MRSA-IV (n = 75; t032), and CC8-MRSA-IV (n = 65; t008) were the most frequent. We identified PVL in 72 isolates (17.48%; 17/412), with the majority belonging to CC8-MRSA-IV (n = 55; arcA+; t008, t622; the USA300 CA-MRSA clone) and CC5-MRSA-IV (n = 13; t311, t323). To the best of our knowledge, this is the first study on the epidemiology of MRSA in Slovakia. The presence of the epidemic HA-MRSA clones CC5-MRSA-II and CC22-MRSA-IV was found, as was, importantly, the emergence of the global epidemic USA300 CA-MRSA clone. The extensive spread of USA300 among inpatients and outpatients across the Slovakian regions warrants further investigation. IMPORTANCE The epidemiology of MRSA is characterized by the rise and fall of epidemic clones. Understanding the spread, as well as the evolution of successful MRSA clones, depends on the knowledge of global MRSA epidemiology. However, basic knowledge about MRSA epidemiology is still fragmented or completely missing in some parts of the world. This is the first study of MRSA epidemiology in Slovakia to identify the presence of the epidemic HA-MRSA clones CC5-MRSA-II and CC22-MRSA-IV and, importantly and unexpectedly, the emergence of the global epidemic USA300 CA-MRSA clone in the Slovakian community and hospitals. So far, USA300 has failed to spread in Europe, and this study documents an extensive spread of this epidemic clone in a European country for the first time.
- MeSH
- infekce spojené se zdravotní péčí * epidemiologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * genetika MeSH
- mikrobiální testy citlivosti MeSH
- nemocnice MeSH
- stafylokokové infekce * epidemiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
Plasmids are the main mobile elements responsible for horizontal gene transfer (HGT) in microorganisms. These replicons extend the metabolic spectrum of their host cells by carrying functional genes. However, it is still unknown to what extent plasmids carry biosynthetic gene clusters (BGCs) related to the production of secondary or specialized metabolites (SMs). Here, we analyzed 9,183 microbial plasmids to unveil their potential to produce SMs, finding a large diversity of cryptic BGCs in a few varieties of prokaryotic host taxa. Some of these plasmids harbored 15 or more BGCs, and many others were exclusively dedicated to mobilizing BGCs. We found an occurrence pattern of BGCs within groups of homologous plasmids shared by a common taxon, mainly in host-associated microbes (e.g., Rhizobiales, Enterobacteriaceae members). Our results add to the knowledge of the ecological functions and potential industrial uses of plasmids and shed light on the dynamics and evolution of SMs in prokaryotes. IMPORTANCE Plasmids are mobile DNA elements that can be shared among microbial cells, and they are useful for bringing to fruition some microbial ecological traits. However, it is not known to what extent plasmids harbor genes related to the production of specialized/secondary metabolites (SMs). In microbes, these metabolites are frequently useful for defense purposes, signaling, etc. In addition, these molecules usually have biotechnological and clinical applications. Here, we analyzed the content, dynamics, and evolution of genes related to the production of SMs in >9,000 microbial plasmids. Our results confirm that some plasmids act as a reservoir of SMs. We also found that some families of biosynthetic gene clusters are exclusively present in some groups of plasmids shared among closely related microbes. Host-associated bacteria (e.g., plant and human microbes) harbor the majority of specialized metabolites encoded in plasmids. These results provide new knowledge about microbial ecological traits and might enable the discovery of novel metabolites.
- MeSH
- Bacteria * genetika MeSH
- lidé MeSH
- multigenová rodina * MeSH
- plazmidy genetika MeSH
- sekundární metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The MLST scheme currently used for Enterococcus faecium typing was designed in 2002 and is based on putative gene functions and Enterococcus faecalis gene sequences available at that time. As a result, the original MLST scheme does not correspond to the real genetic relatedness of E. faecium strains and often clusters genetically distant strains to the same sequence types (ST). Nevertheless, typing has a significant impact on the subsequent epidemiological conclusions and introduction of appropriate epidemiological measures, thus it is crucial to use a more accurate MLST scheme. Based on the genome analysis of 1,843 E. faecium isolates, a new scheme, consisting of 8 highly discriminative loci, was created in this study. These strains were divided into 421 STs using the new MLST scheme, as opposed to 223 STs assigned by the original MLST scheme. The proposed MLST has a discriminatory power of D = 0.983 (CI95% 0.981 to 0.984), compared to the original scheme's D = 0.919 (CI95% 0.911 to 0.927). Moreover, we identified new clonal complexes with our newly designed MLST scheme. The scheme proposed here is available within the PubMLST database. Although whole genome sequencing availability has increased rapidly, MLST remains an integral part of clinical epidemiology, mainly due to its high standardization and excellent robustness. In this study, we proposed and validated a new MLST scheme for E. faecium, which is based on genome-wide data and thus reflects the tested isolates' more accurate genetic similarity. IMPORTANCE Enterococcus faecium is one of the most important pathogens causing health care associated infections. One of the main reasons for its clinical importance is a rapidly spreading resistance to vancomycin and linezolid, which significantly complicates antibiotic treatment of infections caused by such resistant strains. Monitoring the spread and relationships between resistant strains causing severe conditions represents an important tool for implementing appropriate preventive measures. Therefore, there is an urgent need to establish a robust method enabling strain monitoring and comparison at the local, national, and global level. Unfortunately, the current, extensively used MLST scheme does not reflect the real genetic relatedness between individual strains and thus does not provide sufficient discriminatory power. This can lead directly to incorrect epidemiological measures due to insufficient accuracy and biased results.
The emerging virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2 virus), agent of COVID-19, appeared in December 2019 in Wuhan, China, and became a serious threat to global health and public safety. Many COVID-19 vaccines have been approved and licensed around the world. Most of the developed vaccines include S protein and induce an antibody-based immune response. Additionally, T-cell response to the SARS-CoV-2 antigens could be beneficial for combating the infection. The type of immune response is greatly dependent not only on the antigen, but also on adjuvants used in vaccine formulation. Here, we compared the effect of four different adjuvants (AddaS03, Alhydrogel/MPLA, Alhydrogel/ODN2395, Quil A) on the immunogenicity of a mixture of recombinant RBD and N SARS-CoV-2 proteins. We have analyzed the antibody and T-cell response specific to RBD and N proteins and assessed the impact of adjuvants on virus neutralization. Our results clearly indicated that Alhydrogel/MPLA and Alhydrogel/ODN2395 adjuvants elicited the higher titers of specific and cross-reactive antibodies to S protein variants from various SARS-CoV-2 and SARS-CoV-1 strains. Moreover, Alhydrogel/ODN2395 stimulated high cellular response to both antigens, as assessed by IFN-γ production. Importantly, sera collected from mice immunized with RBD/N cocktail in combination with these adjuvants exhibited neutralizing activity against the authentic SARS-CoV-2 virus as well as particles pseudotyped with S protein from various virus variants. The results from our study demonstrate the immunogenic potential of RBD and N antigens and point out the importance of adjuvants selection in vaccine formulation in order to enhance the immunological response. IMPORTANCE Although several COVID-19 vaccines have been approved worldwide, continuous emergence of new SARS-CoV-2 variants calls for new efficient vaccines against them, providing long-lasting immunity. As the immune response after vaccination is dependent not only on antigen used, but also on other vaccine components, e.g., adjuvants, the purpose of this work was to study the effect of different adjuvants on the immunogenicity of RBD/N SARS-CoV-2 cocktail proteins. In this work, it has been shown that immunization with both antigens plus the different adjuvants studied elicited higher Th1 and Th2 responses against RBD and N, which contributed to higher neutralization of the virus. The obtained results can be used for design of new vaccines, not only against SARS-CoV-2, but also against other important viral pathogens.
- MeSH
- COVID-19 * prevence a kontrola MeSH
- hydroxid hlinitý MeSH
- imunogenicita vakcíny MeSH
- lidé MeSH
- myši MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- vakcíny proti COVID-19 MeSH
- virové vakcíny * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this study, we have focused on a multiparametric microbiological analysis of the antistaphylococcal action of the iodinated imine BH77, designed as an analogue of rafoxanide. Its antibacterial activity against five reference strains and eight clinical isolates of Gram-positive cocci of the genera Staphylococcus and Enterococcus was evaluated. The most clinically significant multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant Enterococcus faecium, were also included. The bactericidal and bacteriostatic actions, the dynamics leading to a loss of bacterial viability, antibiofilm activity, BH77 activity in combination with selected conventional antibiotics, the mechanism of action, in vitro cytotoxicity, and in vivo toxicity in an alternative animal model, Galleria mellonella, were analyzed. The antistaphylococcal activity (MIC) ranged from 15.625 to 62.5 μM, and the antienterococcal activity ranged from 62.5 to 125 μM. Its bactericidal action; promising antibiofilm activity; interference with nucleic acid, protein, and peptidoglycan synthesis pathways; and nontoxicity/low toxicity in vitro and in vivo in the Galleria mellonella model were found to be activity attributes of this newly synthesized compound. In conclusion, BH77 could be rightfully minimally considered at least as the structural pattern for future adjuvants for selected antibiotic drugs. IMPORTANCE Antibiotic resistance is among the largest threats to global health, with a potentially serious socioeconomic impact. One of the strategies to deal with the predicted catastrophic future scenarios associated with the rapid emergence of resistant infectious agents lies in the discovery and research of new anti-infectives. In our study, we have introduced a rafoxanide analogue, a newly synthesized and described polyhalogenated 3,5-diiodosalicylaldehyde-based imine, that effectively acts against Gram-positive cocci of the genera Staphylococcus and Enterococcus. The inclusion of an extensive and comprehensive analysis for providing a detailed description of candidate compound-microbe interactions allows the valorization of the beneficial attributes linked to anti-infective action conclusively. In addition, this study can help with making rational decisions about the possible involvement of this molecule in advanced studies or may merit the support of studies focused on related or derived chemical structures to discover more effective new anti-infective drug candidates.
- MeSH
- antibakteriální látky farmakologie chemie MeSH
- antiinfekční látky * farmakologie MeSH
- Enterococcus MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- rafoxanid farmakologie MeSH
- Staphylococcus aureus MeSH
- Staphylococcus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH