Cruciform structures are a common DNA feature important for regulating biological processes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
21816114
PubMed Central
PMC3176155
DOI
10.1186/1471-2199-12-33
PII: 1471-2199-12-33
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus ultrastruktura MeSH
- konformace nukleové kyseliny * MeSH
- konformace proteinů MeSH
- molekulární sekvence - údaje MeSH
- regulace genové exprese * MeSH
- replikace DNA * MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others.Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Zobrazit více v PubMed
Smith GR. Meeting DNA palindromes head-to-head. Genes Dev. 2008;22(19):2612–2620. doi: 10.1101/gad.1724708. PubMed DOI PMC
Palecek E. Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991;26:151–226. doi: 10.3109/10409239109081126. PubMed DOI
van Holde K, Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays. 1994;16(1):59–68. doi: 10.1002/bies.950160110. PubMed DOI
Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM. Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol. 1999;292(5):1149–1160. doi: 10.1006/jmbi.1999.3117. PubMed DOI
Mikheikin AL, Lushnikov AY, Lyubchenko YL. Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry. 2006;45(43):12998–13006. doi: 10.1021/bi061002k. PubMed DOI PMC
Limanskaia O, Limanskii AP. Distribution of potentially hairpin-loop structures in the genome of bovine retroviruses. Vopr Virusol. 2009;54(4):27–32. PubMed
Werbowy K, Cieslinski H, Kur J. Characterization of a cryptic plasmid pSFKW33 from Shewanella sp. 33B. Plasmid. 2009;62(1):44–49. doi: 10.1016/j.plasmid.2009.03.003. PubMed DOI
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem. 1996;63(1):1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI
Aranda A, Perez-Ortin JE, Benham CJ, Del Olmo ML. Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin. Yeast. 1997;13(4):313–326. doi: 10.1002/(SICI)1097-0061(19970330)13:4<313::AID-YEA93>3.0.CO;2-8. PubMed DOI
Bates AD, Maxwell A. DNA Topology. second. Oxford: Oxford University Press; 2005.
Mani P, Yadav VK, Das SK, Chowdhury S. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination. PLoS One. 2009;4(2):e4399. doi: 10.1371/journal.pone.0004399. PubMed DOI PMC
Lin CT, Lyu YL, Liu LF. A cruciform-dumbbell model for inverted dimer formation mediated by inverted repeats. Nucleic Acids Res. 1997;25(15):3009–3016. doi: 10.1093/nar/25.15.3009. PubMed DOI PMC
Kim E, Deppert W. The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol. 2003;81(3):141–150. doi: 10.1139/o03-046. PubMed DOI
Drolet M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol. 2006;59(3):723–730. doi: 10.1111/j.1365-2958.2005.05006.x. PubMed DOI
Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 2004;5(11):R87. doi: 10.1186/gb-2004-5-11-r87. PubMed DOI PMC
Mazur SJ, Sakaguchi K, Appella E, Wang XW, Harris CC, Bohr VA. Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J Mol Biol. 1999;292(2):241–249. doi: 10.1006/jmbi.1999.3064. PubMed DOI
Brazdova M, Palecek J, Cherny DI, Billova S, Fojta M, Pecinka P, Vojtesek B, Jovin TM, Palecek E. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 2002;30(22):4966–4974. doi: 10.1093/nar/gkf616. PubMed DOI PMC
Campos J, Gonzalez-Quintela A, Quinteiro C, Gude F, Perez LF, Torre JA, Vidal C. The -159C/T polymorphism in the promoter region of the CD14 gene is associated with advanced liver disease and higher serum levels of acute-phase proteins in heavy drinkers. Alcohol Clin Exp Res. 2005;29(7):1206–1213. doi: 10.1097/01.ALC.0000171977.25531.7A. PubMed DOI
Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli NR. The structure of supercoiled intermediates in DNA replication. Cell. 1998;94(6):819–827. doi: 10.1016/S0092-8674(00)81740-7. PubMed DOI
Vologodskii AV, Cozzarelli NR. Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct. 1994;23:609–643. doi: 10.1146/annurev.bb.23.060194.003141. PubMed DOI
Vologodskii A, Cozzarelli NR. Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys J. 1996;70(6):2548–2556. doi: 10.1016/S0006-3495(96)79826-0. PubMed DOI PMC
Lyubchenko YL. DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys. 2004;41(1):75–98. doi: 10.1385/CBB:41:1:075. PubMed DOI
Kurahashi H, Inagaki H, Yamada K, Ohye T, Taniguchi M, Emanuel BS, Toda T. Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J Biol Chem. 2004;279(34):35377–35383. doi: 10.1074/jbc.M400354200. PubMed DOI PMC
Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL. Structure and dynamics of supercoil-stabilized DNA cruciforms. J Mol Biol. 1998;280(1):61–72. doi: 10.1006/jmbi.1998.1855. PubMed DOI
Declais AC, Lilley DM. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol. 2008;18(1):86–95. doi: 10.1016/j.sbi.2007.11.001. PubMed DOI
Tolmasky ME, Colloms S, Blakely G, Sherratt DJ. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology. 2000;146(Pt 3):581–589. PubMed
Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol. 2000;296(5):1169–1173. doi: 10.1006/jmbi.2000.3542. PubMed DOI
Panayotatos N, Fontaine A. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J Biol Chem. 1987;262(23):11364–11368. PubMed
Noirot P, Bargonetti J, Novick RP. Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. Proc Natl Acad Sci USA. 1990;87(21):8560–8564. doi: 10.1073/pnas.87.21.8560. PubMed DOI PMC
Yamaguchi K, Yamaguchi M. The replication origin of pSC101: the nucleotide sequence and replication functions of the ori region. Gene. 1984;29(1-2):211–219. doi: 10.1016/0378-1119(84)90181-1. PubMed DOI
Yahyaoui W, Callejo M, Price GB, Zannis-Hadjopoulos M. Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast. BMC Mol Biol. 2007;8:27. doi: 10.1186/1471-2199-8-27. PubMed DOI PMC
Bell D, Sabloff M, Zannis-Hadjopoulos M, Price G. Anti-cruciform DNA affinity purification of active mammalian origins of replication. Biochim Biophys Acta. 1991;1089(3):299–308. PubMed
Zannis-Hadjopoulos M, Frappier L, Khoury M, Price GB. Effect of anti-cruciform DNA monoclonal antibodies on DNA replication. Embo J. 1988;7(6):1837–1844. PubMed PMC
Alvarez D, Novac O, Callejo M, Ruiz MT, Price GB, Zannis-Hadjopoulos M. 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication. J Cell Biochem. 2002;87(2):194–207. doi: 10.1002/jcb.10294. PubMed DOI
Callejo M, Alvarez D, Price GB, Zannis-Hadjopoulos M. The 14-3-3 protein homologues from Saccharomyces cerevisiae, Bmh1p and Bmh2p, have cruciform DNA-binding activity and associate in vivo with ARS307. J Biol Chem. 2002;277(41):38416–38423. doi: 10.1074/jbc.M202050200. PubMed DOI
Haniford DB, Pulleyblank DE. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 1985;13(12):4343–4363. doi: 10.1093/nar/13.12.4343. PubMed DOI PMC
Hanke JH, Hambor JE, Kavathas P. Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. J Mol Biol. 1995;246(1):63–73. doi: 10.1006/jmbi.1994.0066. PubMed DOI
Dayn A, Malkhosyan S, Mirkin SM. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 1992;20(22):5991–5997. doi: 10.1093/nar/20.22.5991. PubMed DOI PMC
Xu J, De Zhu J, Ni M, Wan F, Gu JR. The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like 1(RNMTL1) gene, a newly discovered 17p13.3 gene. Cell Res. 2002;12(3-4):177–197. doi: 10.1038/sj.cr.7290124. PubMed DOI
Allers T, Leach DR. DNA palindromes adopt a methylation-resistant conformation that is consistent with DNA cruciform or hairpin formation in vivo. J Mol Biol. 1995;252(1):70–85. doi: 10.1006/jmbi.1994.0476. PubMed DOI
Harada S, Uchida M, Shimizu N. Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem. 2009;284(36):24320–24327. doi: 10.1074/jbc.M109.008128. PubMed DOI PMC
Cote AG, Lewis SM. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol Cell. 2008;31(6):800–812. doi: 10.1016/j.molcel.2008.08.025. PubMed DOI
Lilley DM, White MF. The junction-resolving enzymes. Nat Rev Mol Cell Biol. 2001;2(6):433–443. doi: 10.1038/35073057. PubMed DOI
Aravind L, Makarova KS, Koonin EV. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 2000;28(18):3417–3432. doi: 10.1093/nar/28.18.3417. PubMed DOI PMC
Khuu PA, Voth AR, Hays FA, Ho PS. The stacked-X DNA Holliday junction and protein recognition. J Mol Recognit. 2006;19(3):234–242. doi: 10.1002/jmr.765. PubMed DOI PMC
Lilley DM. Structures of helical junctions in nucleic acids. Q Rev Biophys. 2000;33(2):109–159. doi: 10.1017/S0033583500003590. PubMed DOI
Stefanovsky VY, Moss T. The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA. Methods Mol Biol. 2009;543:537–546. doi: 10.1007/978-1-60327-015-1_31. PubMed DOI
Mazina OM, Rossi MJ, Thomaa NH, Mazin AV. Interactions of human rad54 protein with branched DNA molecules. J Biol Chem. 2007;282(29):21068–21080. doi: 10.1074/jbc.M701992200. PubMed DOI
Naseem R, Webb M. Analysis of the DNA binding activity of BRCA1 and its modulation by the tumour suppressor p53. PLoS ONE. 2008;3(6):e2336. doi: 10.1371/journal.pone.0002336. PubMed DOI PMC
Brazda V, Jagelska EB, Liao JC, Arrowsmith CH. The central region of BRCA1 binds preferentially to supercoiled DNA. J Biomol Struct Dyn. 2009;27(1):97–104. PubMed
Chasovskikh S, Dimtchev A, Smulson M, Dritschilo A. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A. 2005;68(1):21–27. PubMed
Poulet A, Buisson R, Faivre-Moskalenko C, Koelblen M, Amiard S, Montel F, Cuesta-Lopez S, Bornet O, Guerlesquin F, Godet T. et al.TRF2 promotes, remodels and protects telomeric Holliday junctions. Embo J. 2009;28(6):641–651. doi: 10.1038/emboj.2009.11. PubMed DOI PMC
Shiba T, Iwasaki H, Nakata A, Shinagawa H. SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc Natl Acad Sci USA. 1991;88(19):8445–8449. doi: 10.1073/pnas.88.19.8445. PubMed DOI PMC
Iwasaki H, Takahagi M, Nakata A, Shinagawa H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev. 1992;6(11):2214–2220. doi: 10.1101/gad.6.11.2214. PubMed DOI
van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet. 2000;1:409–459. doi: 10.1146/annurev.genom.1.1.409. PubMed DOI
Wakasugi M, Reardon JT, Sancar A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem. 1997;272(25):16030–16034. doi: 10.1074/jbc.272.25.16030. PubMed DOI
Stros M, Bacikova A, Polanska E, Stokrova J, Strauss F. HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity. Nucleic Acids Res. 2007;35(15):5001–5013. doi: 10.1093/nar/gkm525. PubMed DOI PMC
Klungland H, Andersen O, Kisen G, Alestrom P, Tora L. Estrogen receptor binds to the salmon GnRH gene in a region with long palindromic sequences. Mol Cell Endocrinol. 1993;95(1-2):147–154. doi: 10.1016/0303-7207(93)90040-Q. PubMed DOI
Benjamin RC, Gill DM. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J Biol Chem. 1980;255(21):10502–10508. PubMed
Rouleau M, Aubin RA, Poirier GG. Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Sci. 2004;117(Pt 6):815–825. PubMed
Tulin A, Chinenov Y, Spradling A. Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol. 2003;56:55–83. PubMed
Soldatenkov VA, Chasovskikh S, Potaman VN, Trofimova I, Smulson ME, Dritschilo A. Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences. J Biol Chem. 2002;277(1):665–670. PubMed
Lonskaya I, Potaman VN, Shlyakhtenko LS, Oussatcheva EA, Lyubchenko YL, Soldatenkov VA. Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J Biol Chem. 2005;280(17):17076–17083. doi: 10.1074/jbc.M413483200. PubMed DOI
Dey A, Verma CS, Lane DP. Updates on p53: modulation of p53 degradation as a therapeutic approach. Br J Cancer. 2008;98(1):4–8. doi: 10.1038/sj.bjc.6604098. PubMed DOI PMC
Kim E, Rohaly G, Heinrichs S, Gimnopoulos D, Meissner H, Deppert W. Influence of promoter DNA topology on sequence-specific DNA binding and transactivation by tumor suppressor p53. Oncogene. 1999;18(51):7310–7318. doi: 10.1038/sj.onc.1203139. PubMed DOI
Brazda V, Jagelska EB, Fojta M, Palecek E. Searching for target sequences by p53 protein is influenced by DNA length. Biochem Biophys Res Commun. 2006;341(2):470–477. doi: 10.1016/j.bbrc.2005.12.202. PubMed DOI
Brazda V, Muller P, Brozkova K, Vojtesek B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Commun. 2006;351(2):499–506. doi: 10.1016/j.bbrc.2006.10.065. PubMed DOI
Palecek E, Vlk D, Stankova V, Brazda V, Vojtesek B, Hupp TR, Schaper A, Jovin TM. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15(18):2201–2209. doi: 10.1038/sj.onc.1201398. PubMed DOI
Brazda V, Palecek J, Pospisilova S, Vojtesek B, Palecek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem Biophys Res Commun. 2000;267(3):934–939. doi: 10.1006/bbrc.1999.2056. PubMed DOI
Degtyareva N, Subramanian D, Griffith JD. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem. 2001;276(12):8778–8784. doi: 10.1074/jbc.M006795200. PubMed DOI
Nagaich AK, Appella E, Harrington RE. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J Biol Chem. 1997;272(23):14842–14849. doi: 10.1074/jbc.272.23.14842. PubMed DOI
Stros M, Muselikova-Polanska E, Pospisilova S, Strauss F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry. 2004;43(22):7215–7225. doi: 10.1021/bi049928k. PubMed DOI
Subramanian D, Griffith JD. Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events. Biochemistry. 2005;44(7):2536–2544. doi: 10.1021/bi048700u. PubMed DOI
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–514. doi: 10.1016/S0092-8674(00)80760-6. PubMed DOI
Jagelska EB, Brazda V, Pecinka P, Palecek E, Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J. 2008;412(1):57–63. doi: 10.1042/BJ20071648. PubMed DOI
Jagelska EB, Pivonkova H, Fojta M, Brazda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem Biophys Res Commun. 2010;391(3):1409–1414. doi: 10.1016/j.bbrc.2009.12.076. PubMed DOI
Hede MS, Petersen RL, Frohlich RF, Kruger D, Andersen FF, Andersen AH, Knudsen BR. Resolution of Holliday junction substrates by human topoisomerase I. J Mol Biol. 2007;365(4):1076–1092. doi: 10.1016/j.jmb.2006.10.050. PubMed DOI
Lee GE, Kim JH, Chung IK. Topoisomerase II-mediated DNA cleavage on the cruciform structure formed within the 5'upstream region of the human beta-globin gene. Mol Cells. 1998;8(4):424–430. PubMed
Heyer WD, Li X, Rolfsmeier M, Zhang XP. Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res. 2006;34(15):4115–4125. doi: 10.1093/nar/gkl481. PubMed DOI PMC
Bugreev DV, Mazina OM, Mazin AV. Rad54 protein promotes branch migration of Holliday junctions. Nature. 2006;442(7102):590–593. doi: 10.1038/nature04889. PubMed DOI
Modesti M, Budzowska M, Baldeyron C, Demmers JA, Ghirlando R, Kanaar R. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell. 2007;28(3):468–481. doi: 10.1016/j.molcel.2007.08.025. PubMed DOI
Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem. 2001;276(28):26317–26323. doi: 10.1074/jbc.M100162200. PubMed DOI
Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin. Gene. 2004;343(1):1–9. doi: 10.1016/j.gene.2004.08.029. PubMed DOI
Waldmann T, Baack M, Richter N, Gruss C. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res. 2003;31(23):7003–7010. doi: 10.1093/nar/gkg864. PubMed DOI PMC
Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev. 2000;14(11):1308–1312. PubMed PMC
Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol. 2004;24(13):6011–6020. doi: 10.1128/MCB.24.13.6011-6020.2004. PubMed DOI PMC
Kappes F, Scholten I, Richter N, Gruss C, Waldmann T. Functional domains of the ubiquitous chromatin protein DEK. Mol Cell Biol. 2004;24(13):6000–6010. doi: 10.1128/MCB.24.13.6000-6010.2004. PubMed DOI PMC
Bohm F, Kappes F, Scholten I, Richter N, Matsuo H, Knippers R, Waldmann T. The SAF-box domain of chromatin protein DEK. Nucleic Acids Res. 2005;33(3):1101–1110. doi: 10.1093/nar/gki258. PubMed DOI PMC
Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997;90(3):425–435. doi: 10.1016/S0092-8674(00)80503-6. PubMed DOI
Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886–895. doi: 10.1016/S0960-9822(00)00610-2. PubMed DOI
Sturdy A, Naseem R, Webb M. Purification and characterisation of a soluble N-terminal fragment of the breast cancer susceptibility protein BRCA1. J Mol Biol. 2004;340(3):469–475. doi: 10.1016/j.jmb.2004.05.005. PubMed DOI
Paull TT, Cortez D, Bowers B, Elledge SJ, Gellert M. Direct DNA binding by Brca1. Proc Natl Acad Sci USA. 2001;98(11):6086–6091. doi: 10.1073/pnas.111125998. PubMed DOI PMC
Naseem R, Sturdy A, Finch D, Jowitt T, Webb M. Mapping and conformational characterization of the DNA-binding region of the breast cancer susceptibility protein BRCA1. Biochem J. 2006;395(3):529–535. doi: 10.1042/BJ20051646. PubMed DOI PMC
De la Torre C, Pincheira J, Lopez-Saez JF. Human syndromes with genomic instability and multiprotein machines that repair DNA double-strand breaks. Histol Histopathol. 2003;18(1):225–243. PubMed
Banks GC, Li Y, Reeves R. Differential in vivo modifications of the HMGI(Y) nonhistone chromatin proteins modulate nucleosome and DNA interactions. Biochemistry. 2000;39(28):8333–8346. doi: 10.1021/bi000378+. PubMed DOI
Grasser KD, Teo SH, Lee KB, Broadhurst RW, Rees C, Hardman CH, Thomas JO. DNA-binding properties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1) Eur J Biochem. 1998;253(3):787–795. doi: 10.1046/j.1432-1327.1998.2530787.x. PubMed DOI
Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin Genet Dev. 2003;13(2):170–178. doi: 10.1016/S0959-437X(03)00023-6. PubMed DOI
Deckert J, Khalaf RA, Hwang SM, Zitomer RS. Characterization of the DNA binding and bending HMG domain of the yeast hypoxic repressor Rox1. Nucleic Acids Res. 1999;27(17):3518–3526. doi: 10.1093/nar/27.17.3518. PubMed DOI PMC
Phillips NB, Nikolskaya T, Jancso-Radek A, Ittah V, Jiang F, Singh R, Haas E, Weiss MA. Sry-directed sex reversal in transgenic mice is robust with respect to enhanced DNA bending: comparison of human and murine HMG boxes. Biochemistry. 2004;43(22):7066–7081. doi: 10.1021/bi049920a. PubMed DOI
Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill ME, Crane-Robinson C, Privalov PL. DNA binding and bending by HMG boxes: energetic determinants of specificity. J Mol Biol. 2004;343(2):371–393. doi: 10.1016/j.jmb.2004.08.035. PubMed DOI
Stros M, Polanska E, Struncova S, Pospisilova S. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res. 2009;37(7):2070–2086. doi: 10.1093/nar/gkp067. PubMed DOI PMC
Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T. ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF. Biochemistry. 2006;45(11):3626–3634. doi: 10.1021/bi051782h. PubMed DOI
Harrer M, Luhrs H, Bustin M, Scheer U, Hock R. Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci. 2004;117(Pt 16):3459–3471. PubMed
Boulikas T. Evolutionary consequences of nonrandom damage and repair of chromatin domains. J Mol Evol. 1992;35(2):156–180. PubMed
Kamashev D, Balandina A, Rouviere-Yaniv J. The binding motif recognized by HU on both nicked and cruciform DNA. Embo J. 1999;18(19):5434–5444. doi: 10.1093/emboj/18.19.5434. PubMed DOI PMC
Hertel L, De Andrea M, Bellomo G, Santoro P, Landolfo S, Gariglio M. The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res. 1999;250(2):313–328. doi: 10.1006/excr.1999.4495. PubMed DOI
JR P, Norman DG, Bramham J, Bianchi ME, Lilley DM. HMG box proteins bind to four-way DNA junctions in their open conformation. Embo J. 1998;17(3):817–826. doi: 10.1093/emboj/17.3.817. PubMed DOI PMC
Assenberg R, Webb M, Connolly E, Stott K, Watson M, Hobbs J, Thomas JO. A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochem J. 2008;411(3):553–561. doi: 10.1042/BJ20071613. PubMed DOI
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem. 1996;63(1):1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI
Zannis-Hadjopoulos M, Yahyaoui W, Callejo M. 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci. 2008;33(1):44–50. doi: 10.1016/j.tibs.2007.09.012. PubMed DOI
Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae) BMC Genomics. 2008;9:215. doi: 10.1186/1471-2164-9-215. PubMed DOI PMC
Omberg L, Meyerson JR, Kobayashi K, Drury LS, Diffley JF, Alter O. Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol. 2009;5:312. PubMed PMC
Bonnefoy E. The ribosomal S16 protein of Escherichia coli displaying a DNA-nicking activity binds to cruciform DNA. Eur J Biochem. 1997;247(3):852–859. doi: 10.1111/j.1432-1033.1997.t01-1-00852.x. PubMed DOI
Linder B, Newman R, Jones LK, Debernardi S, Young BD, Freemont P, Verrijzer CP, Saha V. Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J Mol Biol. 2000;299(2):369–378. doi: 10.1006/jmbi.2000.3766. PubMed DOI
Peterson CL. The SMC family: novel motor proteins for chromosome condensation? Cell. 1994;79(3):389–392. doi: 10.1016/0092-8674(94)90247-X. PubMed DOI
Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR. The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem. 2006;281(48):36952–36959. doi: 10.1074/jbc.M608004200. PubMed DOI
Hirano T. SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci. 2005;360(1455):507–514. doi: 10.1098/rstb.2004.1606. PubMed DOI PMC
Akhmedov AT, Frei C, Tsai-Pflugfelder M, Kemper B, Gasser SM, Jessberger R. Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J Biol Chem. 1998;273(37):24088–24094. doi: 10.1074/jbc.273.37.24088. PubMed DOI
Mikhailov VS, Rohrmann GF. Binding of the baculovirus very late expression factor 1 (VLF-1) to different DNA structures. BMC Mol Biol. 2002;3:14. doi: 10.1186/1471-2199-3-14. PubMed DOI PMC
Aitken A. 14-3-3 proteins: a historic overview. Semin Cancer Biol. 2006;16(3):162–172. doi: 10.1016/j.semcancer.2006.03.005. PubMed DOI
Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–647. doi: 10.1146/annurev.pharmtox.40.1.617. PubMed DOI
Zannis-Hadjopoulos M, Sibani S, Price GB. Eucaryotic replication origin binding proteins. Front Biosci. 2004;9:2133–2143. doi: 10.2741/1369. PubMed DOI
Todd A, Cossons N, Aitken A, Price GB, Zannis-Hadjopoulos M. Human cruciform binding protein belongs to the 14-3-3 family. Biochemistry. 1998;37(40):14317–14325. doi: 10.1021/bi980768k. PubMed DOI
van Heusden GP, van der Zanden AL, Ferl RJ, Steensma HY. Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 bmh2 double disruption. FEBS Lett. 1996;391(3):252–256. doi: 10.1016/0014-5793(96)00746-6. PubMed DOI
Broeker PL, Harden A, Rowley JD, Zeleznik-Le N. The mixed lineage leukemia (MLL) protein involved in 11q23 translocations contains a domain that binds cruciform DNA and scaffold attachment region (SAR) DNA. Curr Top Microbiol Immunol. 1996;211:259–268. PubMed
Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA. 1994;91(22):10610–10614. doi: 10.1073/pnas.91.22.10610. PubMed DOI PMC
Ozgenc A, Loeb LA. Current advances in unraveling the function of the Werner syndrome protein. Mutat Res. 2005;577(1-2):237–251. PubMed
Hanada K, Hickson ID. Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci. 2007;64(17):2306–2322. doi: 10.1007/s00018-007-7121-z. PubMed DOI PMC
Compton SA, Tolun G, Kamath-Loeb AS, Loeb LA, Griffith JD. The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J Biol Chem. 2008;283(36):24478–24483. doi: 10.1074/jbc.M803370200. PubMed DOI PMC
Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401(6753):616–620. doi: 10.1038/44188. PubMed DOI
Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–654. doi: 10.1038/nrc2682. PubMed DOI
Jett SD, Cherny DI, Subramaniam V, Jovin TM. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. J Mol Biol. 2000;299(3):585–592. doi: 10.1006/jmbi.2000.3759. PubMed DOI
Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. Embo J. 1991;10(13):4381–4389. PubMed PMC
Biertumpfel C, Yang W, Suck D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature. 2007;449(7162):616–620. doi: 10.1038/nature06152. PubMed DOI
Pan PS, Curtis FA, Carroll CL, Medina I, Liotta LA, Sharples GJ, McAlpine SR. Novel antibiotics: C-2 symmetrical macrocycles inhibiting Holliday junction DNA binding by E. coli RuvC. Bioorg Med Chem. 2006;14(14):4731–4739. doi: 10.1016/j.bmc.2006.03.028. PubMed DOI
Fogg JM, Schofield MJ, Declais AC, Lilley DM. Yeast resolving enzyme CCE1 makes sequential cleavages in DNA junctions within the lifetime of the complex. Biochemistry. 2000;39(14):4082–4089. doi: 10.1021/bi992785v. PubMed DOI
Garcia AD, Otero J, Lebowitz J, Schuck P, Moss B. Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem. 2006;281(17):11618–11626. doi: 10.1074/jbc.M600182200. PubMed DOI
Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T. A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. 2005;435(7045):1059–1066. doi: 10.1038/nature03657. PubMed DOI PMC
Declais AC, Liu J, Freeman AD, Lilley DM. Structural recognition between a four-way DNA junction and a resolving enzyme. J Mol Biol. 2006;359(5):1261–1276. doi: 10.1016/j.jmb.2006.04.037. PubMed DOI
Guan C, Kumar S. A single catalytic domain of the junction-resolving enzyme T7 endonuclease I is a non-specific nicking endonuclease. Nucleic Acids Res. 2005;33(19):6225–6234. doi: 10.1093/nar/gki921. PubMed DOI PMC
Hadden JM, Declais AC, Carr SB, Lilley DM, Phillips SE. The structural basis of Holliday junction resolution by T7 endonuclease I. Nature. 2007;449(7162):621–624. doi: 10.1038/nature06158. PubMed DOI
Spiro C, McMurray CT. Switching of DNA secondary structure in proenkephalin transcriptional regulation. J Biol Chem. 1997;272(52):33145–33152. doi: 10.1074/jbc.272.52.33145. PubMed DOI
Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Res. 2004;32(18):5442–5451. doi: 10.1093/nar/gkh869. PubMed DOI PMC
Lyu YL, Lin CT, Liu LF. Inversion/dimerization of plasmids mediated by inverted repeats. J Mol Biol. 1999;285(4):1485–1501. doi: 10.1006/jmbi.1998.2419. PubMed DOI
Giraud-Panis MJ, Lilley DM. Near-simultaneous DNA cleavage by the subunits of the junction-resolving enzyme T4 endonuclease VII. Embo J. 1997;16(9):2528–2534. doi: 10.1093/emboj/16.9.2528. PubMed DOI PMC
Macmaster R, Sedelnikova S, Baker PJ, Bolt EL, Lloyd RG, Rafferty JB. RusA Holliday junction resolvase: DNA complex structure--insights into selectivity and specificity. Nucleic Acids Res. 2006;34(19):5577–5584. doi: 10.1093/nar/gkl447. PubMed DOI PMC
Owen BA, W HL, McMurray CT. The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat Struct Mol Biol. 2009;16(5):550–557. doi: 10.1038/nsmb.1596. PubMed DOI PMC
Surtees JA, Alani E. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol. 2006;360(3):523–536. doi: 10.1016/j.jmb.2006.05.032. PubMed DOI
Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y. Crystal structure of the Mus81-Eme1 complex. Genes Dev. 2008;22(8):1093–1106. doi: 10.1101/gad.1618708. PubMed DOI PMC
Ehmsen KT, Heyer WD. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 2008;36(7):2182–2195. doi: 10.1093/nar/gkm1152. PubMed DOI PMC
Taylor ER, McGowan CH. Cleavage mechanism of human Mus81-Eme1 acting on Holliday-junction structures. Proc Natl Acad Sci USA. 2008;105(10):3757–3762. doi: 10.1073/pnas.0710291105. PubMed DOI PMC
Fouche N, Cesare AJ, Willcox S, Ozgur S, Compton SA, Griffith JD. The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J Biol Chem. 2006;281(49):37486–37495. doi: 10.1074/jbc.M608778200. PubMed DOI
Lee JH, Park CJ, Arunkumar AI, Chazin WJ, Choi BS. NMR study on the interaction between RPA and DNA decamer containing cis-syn cyclobutane pyrimidine dimer in the presence of XPA: implication for damage verification and strand-specific dual incision in nucleotide excision repair. Nucleic Acids Res. 2003;31(16):4747–4754. doi: 10.1093/nar/gkg683. PubMed DOI PMC
Sekelsky JJ, Hollis KJ, Eimerl AI, Burtis KC, Hawley RS. Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res. 2000;459(3):219–228. PubMed
Lee S, Cavallo L, Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem. 1997;272(11):7532–7539. doi: 10.1074/jbc.272.11.7532. PubMed DOI
Ma B, Levine AJ. Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Res. 2007;35(22):7733–7747. doi: 10.1093/nar/gkm890. PubMed DOI PMC
Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol. 2005;25(11):4476–4487. doi: 10.1128/MCB.25.11.4476-4487.2005. PubMed DOI PMC
Rass U, Kemper B. Crp1p, a new cruciform DNA-binding protein in the yeast Saccharomyces cerevisiae. J Mol Biol. 2002;323(4):685–700. doi: 10.1016/S0022-2836(02)00993-2. PubMed DOI
van Houte LP, Chuprina VP, van der Wetering M, Boelens R, Kaptein R, Clevers H. Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem. 1995;270(51):30516–30524. doi: 10.1074/jbc.270.51.30516. PubMed DOI
Pearson CE, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry. 1994;33(47):14185–14196. doi: 10.1021/bi00251a030. PubMed DOI
Nakamura Y, Yoshioka K, Shirakawa H, Yoshida M. HMG box A in HMG2 protein functions as a mediator of DNA structural alteration together with box B. J Biochem. 2001;129(4):643–651. PubMed
Culard F, Gervais A, de Vuyst G, Spotheim-Maurizot M, Charlier M. Response of a DNA-binding protein to radiation-induced oxidative stress. J Mol Biol. 2003;328(5):1185–1195. doi: 10.1016/S0022-2836(03)00361-9. PubMed DOI
Tripathi P, Pal D, Muniyappa K. Saccharomyces cerevisiae Hop1 protein zinc finger motif binds to the Holliday junction and distorts the DNA structure: implications for holliday junction migration. Biochemistry. 2007;46(44):12530–12542. doi: 10.1021/bi701078v. PubMed DOI
Tripathi P, Anuradha S, Ghosal G, Muniyappa K. Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution. J Mol Biol. 2006;364(4):599–611. doi: 10.1016/j.jmb.2006.08.096. PubMed DOI
Rene B, Fermandjian S, Mauffret O. Does topoisomerase II specifically recognize and cleave hairpins, cruciforms and crossovers of DNA? Biochimie. 2007;89(4):508–515. doi: 10.1016/j.biochi.2007.02.011. PubMed DOI
Dip R, Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. Faseb J. 2005;19(7):704–715. doi: 10.1096/fj.04-3041rev. PubMed DOI
Bonnefoy E, Takahashi M, Yaniv JR. DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol. 1994;242(2):116–129. doi: 10.1006/jmbi.1994.1563. PubMed DOI
Pinson V, Takahashi M, Rouviere-Yaniv J. Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol. 1999;287(3):485–497. doi: 10.1006/jmbi.1999.2631. PubMed DOI
Polymorphic potential of SRF binding site of c-Fos gene promoter: in vitro study
Special Issue "Bioinformatics of Unusual DNA and RNA Structures"
Non-canonical DNA structures in the human ribosomal DNA
Variability of Inverted Repeats in All Available Genomes of Bacteria
Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids
G-quadruplexes in helminth parasites
R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences
SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci
G-quadruplexes in H1N1 influenza genomes
Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins
Structures and stability of simple DNA repeats from bacteria
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure
G4Hunter web application: a web server for G-quadruplex prediction
The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria
Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs
p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms