Cruciform structures are a common DNA feature important for regulating biological processes

. 2011 Aug 05 ; 12 () : 33. [epub] 20110805

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid21816114

DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others.Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.

Zobrazit více v PubMed

Smith GR. Meeting DNA palindromes head-to-head. Genes Dev. 2008;22(19):2612–2620. doi: 10.1101/gad.1724708. PubMed DOI PMC

Palecek E. Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991;26:151–226. doi: 10.3109/10409239109081126. PubMed DOI

van Holde K, Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays. 1994;16(1):59–68. doi: 10.1002/bies.950160110. PubMed DOI

Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM. Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol. 1999;292(5):1149–1160. doi: 10.1006/jmbi.1999.3117. PubMed DOI

Mikheikin AL, Lushnikov AY, Lyubchenko YL. Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry. 2006;45(43):12998–13006. doi: 10.1021/bi061002k. PubMed DOI PMC

Limanskaia O, Limanskii AP. Distribution of potentially hairpin-loop structures in the genome of bovine retroviruses. Vopr Virusol. 2009;54(4):27–32. PubMed

Werbowy K, Cieslinski H, Kur J. Characterization of a cryptic plasmid pSFKW33 from Shewanella sp. 33B. Plasmid. 2009;62(1):44–49. doi: 10.1016/j.plasmid.2009.03.003. PubMed DOI

Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem. 1996;63(1):1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI

Aranda A, Perez-Ortin JE, Benham CJ, Del Olmo ML. Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin. Yeast. 1997;13(4):313–326. doi: 10.1002/(SICI)1097-0061(19970330)13:4<313::AID-YEA93>3.0.CO;2-8. PubMed DOI

Bates AD, Maxwell A. DNA Topology. second. Oxford: Oxford University Press; 2005.

Mani P, Yadav VK, Das SK, Chowdhury S. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination. PLoS One. 2009;4(2):e4399. doi: 10.1371/journal.pone.0004399. PubMed DOI PMC

Lin CT, Lyu YL, Liu LF. A cruciform-dumbbell model for inverted dimer formation mediated by inverted repeats. Nucleic Acids Res. 1997;25(15):3009–3016. doi: 10.1093/nar/25.15.3009. PubMed DOI PMC

Kim E, Deppert W. The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol. 2003;81(3):141–150. doi: 10.1139/o03-046. PubMed DOI

Drolet M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol. 2006;59(3):723–730. doi: 10.1111/j.1365-2958.2005.05006.x. PubMed DOI

Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 2004;5(11):R87. doi: 10.1186/gb-2004-5-11-r87. PubMed DOI PMC

Mazur SJ, Sakaguchi K, Appella E, Wang XW, Harris CC, Bohr VA. Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J Mol Biol. 1999;292(2):241–249. doi: 10.1006/jmbi.1999.3064. PubMed DOI

Brazdova M, Palecek J, Cherny DI, Billova S, Fojta M, Pecinka P, Vojtesek B, Jovin TM, Palecek E. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 2002;30(22):4966–4974. doi: 10.1093/nar/gkf616. PubMed DOI PMC

Campos J, Gonzalez-Quintela A, Quinteiro C, Gude F, Perez LF, Torre JA, Vidal C. The -159C/T polymorphism in the promoter region of the CD14 gene is associated with advanced liver disease and higher serum levels of acute-phase proteins in heavy drinkers. Alcohol Clin Exp Res. 2005;29(7):1206–1213. doi: 10.1097/01.ALC.0000171977.25531.7A. PubMed DOI

Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli NR. The structure of supercoiled intermediates in DNA replication. Cell. 1998;94(6):819–827. doi: 10.1016/S0092-8674(00)81740-7. PubMed DOI

Vologodskii AV, Cozzarelli NR. Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct. 1994;23:609–643. doi: 10.1146/annurev.bb.23.060194.003141. PubMed DOI

Vologodskii A, Cozzarelli NR. Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys J. 1996;70(6):2548–2556. doi: 10.1016/S0006-3495(96)79826-0. PubMed DOI PMC

Lyubchenko YL. DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys. 2004;41(1):75–98. doi: 10.1385/CBB:41:1:075. PubMed DOI

Kurahashi H, Inagaki H, Yamada K, Ohye T, Taniguchi M, Emanuel BS, Toda T. Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J Biol Chem. 2004;279(34):35377–35383. doi: 10.1074/jbc.M400354200. PubMed DOI PMC

Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL. Structure and dynamics of supercoil-stabilized DNA cruciforms. J Mol Biol. 1998;280(1):61–72. doi: 10.1006/jmbi.1998.1855. PubMed DOI

Declais AC, Lilley DM. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol. 2008;18(1):86–95. doi: 10.1016/j.sbi.2007.11.001. PubMed DOI

Tolmasky ME, Colloms S, Blakely G, Sherratt DJ. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology. 2000;146(Pt 3):581–589. PubMed

Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol. 2000;296(5):1169–1173. doi: 10.1006/jmbi.2000.3542. PubMed DOI

Panayotatos N, Fontaine A. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J Biol Chem. 1987;262(23):11364–11368. PubMed

Noirot P, Bargonetti J, Novick RP. Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. Proc Natl Acad Sci USA. 1990;87(21):8560–8564. doi: 10.1073/pnas.87.21.8560. PubMed DOI PMC

Yamaguchi K, Yamaguchi M. The replication origin of pSC101: the nucleotide sequence and replication functions of the ori region. Gene. 1984;29(1-2):211–219. doi: 10.1016/0378-1119(84)90181-1. PubMed DOI

Yahyaoui W, Callejo M, Price GB, Zannis-Hadjopoulos M. Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast. BMC Mol Biol. 2007;8:27. doi: 10.1186/1471-2199-8-27. PubMed DOI PMC

Bell D, Sabloff M, Zannis-Hadjopoulos M, Price G. Anti-cruciform DNA affinity purification of active mammalian origins of replication. Biochim Biophys Acta. 1991;1089(3):299–308. PubMed

Zannis-Hadjopoulos M, Frappier L, Khoury M, Price GB. Effect of anti-cruciform DNA monoclonal antibodies on DNA replication. Embo J. 1988;7(6):1837–1844. PubMed PMC

Alvarez D, Novac O, Callejo M, Ruiz MT, Price GB, Zannis-Hadjopoulos M. 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication. J Cell Biochem. 2002;87(2):194–207. doi: 10.1002/jcb.10294. PubMed DOI

Callejo M, Alvarez D, Price GB, Zannis-Hadjopoulos M. The 14-3-3 protein homologues from Saccharomyces cerevisiae, Bmh1p and Bmh2p, have cruciform DNA-binding activity and associate in vivo with ARS307. J Biol Chem. 2002;277(41):38416–38423. doi: 10.1074/jbc.M202050200. PubMed DOI

Haniford DB, Pulleyblank DE. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 1985;13(12):4343–4363. doi: 10.1093/nar/13.12.4343. PubMed DOI PMC

Hanke JH, Hambor JE, Kavathas P. Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. J Mol Biol. 1995;246(1):63–73. doi: 10.1006/jmbi.1994.0066. PubMed DOI

Dayn A, Malkhosyan S, Mirkin SM. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 1992;20(22):5991–5997. doi: 10.1093/nar/20.22.5991. PubMed DOI PMC

Xu J, De Zhu J, Ni M, Wan F, Gu JR. The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like 1(RNMTL1) gene, a newly discovered 17p13.3 gene. Cell Res. 2002;12(3-4):177–197. doi: 10.1038/sj.cr.7290124. PubMed DOI

Allers T, Leach DR. DNA palindromes adopt a methylation-resistant conformation that is consistent with DNA cruciform or hairpin formation in vivo. J Mol Biol. 1995;252(1):70–85. doi: 10.1006/jmbi.1994.0476. PubMed DOI

Harada S, Uchida M, Shimizu N. Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem. 2009;284(36):24320–24327. doi: 10.1074/jbc.M109.008128. PubMed DOI PMC

Cote AG, Lewis SM. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol Cell. 2008;31(6):800–812. doi: 10.1016/j.molcel.2008.08.025. PubMed DOI

Lilley DM, White MF. The junction-resolving enzymes. Nat Rev Mol Cell Biol. 2001;2(6):433–443. doi: 10.1038/35073057. PubMed DOI

Aravind L, Makarova KS, Koonin EV. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 2000;28(18):3417–3432. doi: 10.1093/nar/28.18.3417. PubMed DOI PMC

Khuu PA, Voth AR, Hays FA, Ho PS. The stacked-X DNA Holliday junction and protein recognition. J Mol Recognit. 2006;19(3):234–242. doi: 10.1002/jmr.765. PubMed DOI PMC

Lilley DM. Structures of helical junctions in nucleic acids. Q Rev Biophys. 2000;33(2):109–159. doi: 10.1017/S0033583500003590. PubMed DOI

Stefanovsky VY, Moss T. The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA. Methods Mol Biol. 2009;543:537–546. doi: 10.1007/978-1-60327-015-1_31. PubMed DOI

Mazina OM, Rossi MJ, Thomaa NH, Mazin AV. Interactions of human rad54 protein with branched DNA molecules. J Biol Chem. 2007;282(29):21068–21080. doi: 10.1074/jbc.M701992200. PubMed DOI

Naseem R, Webb M. Analysis of the DNA binding activity of BRCA1 and its modulation by the tumour suppressor p53. PLoS ONE. 2008;3(6):e2336. doi: 10.1371/journal.pone.0002336. PubMed DOI PMC

Brazda V, Jagelska EB, Liao JC, Arrowsmith CH. The central region of BRCA1 binds preferentially to supercoiled DNA. J Biomol Struct Dyn. 2009;27(1):97–104. PubMed

Chasovskikh S, Dimtchev A, Smulson M, Dritschilo A. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A. 2005;68(1):21–27. PubMed

Poulet A, Buisson R, Faivre-Moskalenko C, Koelblen M, Amiard S, Montel F, Cuesta-Lopez S, Bornet O, Guerlesquin F, Godet T. et al.TRF2 promotes, remodels and protects telomeric Holliday junctions. Embo J. 2009;28(6):641–651. doi: 10.1038/emboj.2009.11. PubMed DOI PMC

Shiba T, Iwasaki H, Nakata A, Shinagawa H. SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc Natl Acad Sci USA. 1991;88(19):8445–8449. doi: 10.1073/pnas.88.19.8445. PubMed DOI PMC

Iwasaki H, Takahagi M, Nakata A, Shinagawa H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev. 1992;6(11):2214–2220. doi: 10.1101/gad.6.11.2214. PubMed DOI

van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet. 2000;1:409–459. doi: 10.1146/annurev.genom.1.1.409. PubMed DOI

Wakasugi M, Reardon JT, Sancar A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem. 1997;272(25):16030–16034. doi: 10.1074/jbc.272.25.16030. PubMed DOI

Stros M, Bacikova A, Polanska E, Stokrova J, Strauss F. HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity. Nucleic Acids Res. 2007;35(15):5001–5013. doi: 10.1093/nar/gkm525. PubMed DOI PMC

Klungland H, Andersen O, Kisen G, Alestrom P, Tora L. Estrogen receptor binds to the salmon GnRH gene in a region with long palindromic sequences. Mol Cell Endocrinol. 1993;95(1-2):147–154. doi: 10.1016/0303-7207(93)90040-Q. PubMed DOI

Benjamin RC, Gill DM. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J Biol Chem. 1980;255(21):10502–10508. PubMed

Rouleau M, Aubin RA, Poirier GG. Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Sci. 2004;117(Pt 6):815–825. PubMed

Tulin A, Chinenov Y, Spradling A. Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol. 2003;56:55–83. PubMed

Soldatenkov VA, Chasovskikh S, Potaman VN, Trofimova I, Smulson ME, Dritschilo A. Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences. J Biol Chem. 2002;277(1):665–670. PubMed

Lonskaya I, Potaman VN, Shlyakhtenko LS, Oussatcheva EA, Lyubchenko YL, Soldatenkov VA. Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J Biol Chem. 2005;280(17):17076–17083. doi: 10.1074/jbc.M413483200. PubMed DOI

Dey A, Verma CS, Lane DP. Updates on p53: modulation of p53 degradation as a therapeutic approach. Br J Cancer. 2008;98(1):4–8. doi: 10.1038/sj.bjc.6604098. PubMed DOI PMC

Kim E, Rohaly G, Heinrichs S, Gimnopoulos D, Meissner H, Deppert W. Influence of promoter DNA topology on sequence-specific DNA binding and transactivation by tumor suppressor p53. Oncogene. 1999;18(51):7310–7318. doi: 10.1038/sj.onc.1203139. PubMed DOI

Brazda V, Jagelska EB, Fojta M, Palecek E. Searching for target sequences by p53 protein is influenced by DNA length. Biochem Biophys Res Commun. 2006;341(2):470–477. doi: 10.1016/j.bbrc.2005.12.202. PubMed DOI

Brazda V, Muller P, Brozkova K, Vojtesek B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Commun. 2006;351(2):499–506. doi: 10.1016/j.bbrc.2006.10.065. PubMed DOI

Palecek E, Vlk D, Stankova V, Brazda V, Vojtesek B, Hupp TR, Schaper A, Jovin TM. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15(18):2201–2209. doi: 10.1038/sj.onc.1201398. PubMed DOI

Brazda V, Palecek J, Pospisilova S, Vojtesek B, Palecek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem Biophys Res Commun. 2000;267(3):934–939. doi: 10.1006/bbrc.1999.2056. PubMed DOI

Degtyareva N, Subramanian D, Griffith JD. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem. 2001;276(12):8778–8784. doi: 10.1074/jbc.M006795200. PubMed DOI

Nagaich AK, Appella E, Harrington RE. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J Biol Chem. 1997;272(23):14842–14849. doi: 10.1074/jbc.272.23.14842. PubMed DOI

Stros M, Muselikova-Polanska E, Pospisilova S, Strauss F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry. 2004;43(22):7215–7225. doi: 10.1021/bi049928k. PubMed DOI

Subramanian D, Griffith JD. Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events. Biochemistry. 2005;44(7):2536–2544. doi: 10.1021/bi048700u. PubMed DOI

Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–514. doi: 10.1016/S0092-8674(00)80760-6. PubMed DOI

Jagelska EB, Brazda V, Pecinka P, Palecek E, Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J. 2008;412(1):57–63. doi: 10.1042/BJ20071648. PubMed DOI

Jagelska EB, Pivonkova H, Fojta M, Brazda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem Biophys Res Commun. 2010;391(3):1409–1414. doi: 10.1016/j.bbrc.2009.12.076. PubMed DOI

Hede MS, Petersen RL, Frohlich RF, Kruger D, Andersen FF, Andersen AH, Knudsen BR. Resolution of Holliday junction substrates by human topoisomerase I. J Mol Biol. 2007;365(4):1076–1092. doi: 10.1016/j.jmb.2006.10.050. PubMed DOI

Lee GE, Kim JH, Chung IK. Topoisomerase II-mediated DNA cleavage on the cruciform structure formed within the 5'upstream region of the human beta-globin gene. Mol Cells. 1998;8(4):424–430. PubMed

Heyer WD, Li X, Rolfsmeier M, Zhang XP. Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res. 2006;34(15):4115–4125. doi: 10.1093/nar/gkl481. PubMed DOI PMC

Bugreev DV, Mazina OM, Mazin AV. Rad54 protein promotes branch migration of Holliday junctions. Nature. 2006;442(7102):590–593. doi: 10.1038/nature04889. PubMed DOI

Modesti M, Budzowska M, Baldeyron C, Demmers JA, Ghirlando R, Kanaar R. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell. 2007;28(3):468–481. doi: 10.1016/j.molcel.2007.08.025. PubMed DOI

Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem. 2001;276(28):26317–26323. doi: 10.1074/jbc.M100162200. PubMed DOI

Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin. Gene. 2004;343(1):1–9. doi: 10.1016/j.gene.2004.08.029. PubMed DOI

Waldmann T, Baack M, Richter N, Gruss C. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res. 2003;31(23):7003–7010. doi: 10.1093/nar/gkg864. PubMed DOI PMC

Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev. 2000;14(11):1308–1312. PubMed PMC

Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol. 2004;24(13):6011–6020. doi: 10.1128/MCB.24.13.6011-6020.2004. PubMed DOI PMC

Kappes F, Scholten I, Richter N, Gruss C, Waldmann T. Functional domains of the ubiquitous chromatin protein DEK. Mol Cell Biol. 2004;24(13):6000–6010. doi: 10.1128/MCB.24.13.6000-6010.2004. PubMed DOI PMC

Bohm F, Kappes F, Scholten I, Richter N, Matsuo H, Knippers R, Waldmann T. The SAF-box domain of chromatin protein DEK. Nucleic Acids Res. 2005;33(3):1101–1110. doi: 10.1093/nar/gki258. PubMed DOI PMC

Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997;90(3):425–435. doi: 10.1016/S0092-8674(00)80503-6. PubMed DOI

Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886–895. doi: 10.1016/S0960-9822(00)00610-2. PubMed DOI

Sturdy A, Naseem R, Webb M. Purification and characterisation of a soluble N-terminal fragment of the breast cancer susceptibility protein BRCA1. J Mol Biol. 2004;340(3):469–475. doi: 10.1016/j.jmb.2004.05.005. PubMed DOI

Paull TT, Cortez D, Bowers B, Elledge SJ, Gellert M. Direct DNA binding by Brca1. Proc Natl Acad Sci USA. 2001;98(11):6086–6091. doi: 10.1073/pnas.111125998. PubMed DOI PMC

Naseem R, Sturdy A, Finch D, Jowitt T, Webb M. Mapping and conformational characterization of the DNA-binding region of the breast cancer susceptibility protein BRCA1. Biochem J. 2006;395(3):529–535. doi: 10.1042/BJ20051646. PubMed DOI PMC

De la Torre C, Pincheira J, Lopez-Saez JF. Human syndromes with genomic instability and multiprotein machines that repair DNA double-strand breaks. Histol Histopathol. 2003;18(1):225–243. PubMed

Banks GC, Li Y, Reeves R. Differential in vivo modifications of the HMGI(Y) nonhistone chromatin proteins modulate nucleosome and DNA interactions. Biochemistry. 2000;39(28):8333–8346. doi: 10.1021/bi000378+. PubMed DOI

Grasser KD, Teo SH, Lee KB, Broadhurst RW, Rees C, Hardman CH, Thomas JO. DNA-binding properties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1) Eur J Biochem. 1998;253(3):787–795. doi: 10.1046/j.1432-1327.1998.2530787.x. PubMed DOI

Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin Genet Dev. 2003;13(2):170–178. doi: 10.1016/S0959-437X(03)00023-6. PubMed DOI

Deckert J, Khalaf RA, Hwang SM, Zitomer RS. Characterization of the DNA binding and bending HMG domain of the yeast hypoxic repressor Rox1. Nucleic Acids Res. 1999;27(17):3518–3526. doi: 10.1093/nar/27.17.3518. PubMed DOI PMC

Phillips NB, Nikolskaya T, Jancso-Radek A, Ittah V, Jiang F, Singh R, Haas E, Weiss MA. Sry-directed sex reversal in transgenic mice is robust with respect to enhanced DNA bending: comparison of human and murine HMG boxes. Biochemistry. 2004;43(22):7066–7081. doi: 10.1021/bi049920a. PubMed DOI

Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill ME, Crane-Robinson C, Privalov PL. DNA binding and bending by HMG boxes: energetic determinants of specificity. J Mol Biol. 2004;343(2):371–393. doi: 10.1016/j.jmb.2004.08.035. PubMed DOI

Stros M, Polanska E, Struncova S, Pospisilova S. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res. 2009;37(7):2070–2086. doi: 10.1093/nar/gkp067. PubMed DOI PMC

Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T. ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF. Biochemistry. 2006;45(11):3626–3634. doi: 10.1021/bi051782h. PubMed DOI

Harrer M, Luhrs H, Bustin M, Scheer U, Hock R. Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci. 2004;117(Pt 16):3459–3471. PubMed

Boulikas T. Evolutionary consequences of nonrandom damage and repair of chromatin domains. J Mol Evol. 1992;35(2):156–180. PubMed

Kamashev D, Balandina A, Rouviere-Yaniv J. The binding motif recognized by HU on both nicked and cruciform DNA. Embo J. 1999;18(19):5434–5444. doi: 10.1093/emboj/18.19.5434. PubMed DOI PMC

Hertel L, De Andrea M, Bellomo G, Santoro P, Landolfo S, Gariglio M. The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res. 1999;250(2):313–328. doi: 10.1006/excr.1999.4495. PubMed DOI

JR P, Norman DG, Bramham J, Bianchi ME, Lilley DM. HMG box proteins bind to four-way DNA junctions in their open conformation. Embo J. 1998;17(3):817–826. doi: 10.1093/emboj/17.3.817. PubMed DOI PMC

Assenberg R, Webb M, Connolly E, Stott K, Watson M, Hobbs J, Thomas JO. A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochem J. 2008;411(3):553–561. doi: 10.1042/BJ20071613. PubMed DOI

Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem. 1996;63(1):1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI

Zannis-Hadjopoulos M, Yahyaoui W, Callejo M. 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci. 2008;33(1):44–50. doi: 10.1016/j.tibs.2007.09.012. PubMed DOI

Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae) BMC Genomics. 2008;9:215. doi: 10.1186/1471-2164-9-215. PubMed DOI PMC

Omberg L, Meyerson JR, Kobayashi K, Drury LS, Diffley JF, Alter O. Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol. 2009;5:312. PubMed PMC

Bonnefoy E. The ribosomal S16 protein of Escherichia coli displaying a DNA-nicking activity binds to cruciform DNA. Eur J Biochem. 1997;247(3):852–859. doi: 10.1111/j.1432-1033.1997.t01-1-00852.x. PubMed DOI

Linder B, Newman R, Jones LK, Debernardi S, Young BD, Freemont P, Verrijzer CP, Saha V. Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J Mol Biol. 2000;299(2):369–378. doi: 10.1006/jmbi.2000.3766. PubMed DOI

Peterson CL. The SMC family: novel motor proteins for chromosome condensation? Cell. 1994;79(3):389–392. doi: 10.1016/0092-8674(94)90247-X. PubMed DOI

Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR. The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem. 2006;281(48):36952–36959. doi: 10.1074/jbc.M608004200. PubMed DOI

Hirano T. SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci. 2005;360(1455):507–514. doi: 10.1098/rstb.2004.1606. PubMed DOI PMC

Akhmedov AT, Frei C, Tsai-Pflugfelder M, Kemper B, Gasser SM, Jessberger R. Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J Biol Chem. 1998;273(37):24088–24094. doi: 10.1074/jbc.273.37.24088. PubMed DOI

Mikhailov VS, Rohrmann GF. Binding of the baculovirus very late expression factor 1 (VLF-1) to different DNA structures. BMC Mol Biol. 2002;3:14. doi: 10.1186/1471-2199-3-14. PubMed DOI PMC

Aitken A. 14-3-3 proteins: a historic overview. Semin Cancer Biol. 2006;16(3):162–172. doi: 10.1016/j.semcancer.2006.03.005. PubMed DOI

Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–647. doi: 10.1146/annurev.pharmtox.40.1.617. PubMed DOI

Zannis-Hadjopoulos M, Sibani S, Price GB. Eucaryotic replication origin binding proteins. Front Biosci. 2004;9:2133–2143. doi: 10.2741/1369. PubMed DOI

Todd A, Cossons N, Aitken A, Price GB, Zannis-Hadjopoulos M. Human cruciform binding protein belongs to the 14-3-3 family. Biochemistry. 1998;37(40):14317–14325. doi: 10.1021/bi980768k. PubMed DOI

van Heusden GP, van der Zanden AL, Ferl RJ, Steensma HY. Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 bmh2 double disruption. FEBS Lett. 1996;391(3):252–256. doi: 10.1016/0014-5793(96)00746-6. PubMed DOI

Broeker PL, Harden A, Rowley JD, Zeleznik-Le N. The mixed lineage leukemia (MLL) protein involved in 11q23 translocations contains a domain that binds cruciform DNA and scaffold attachment region (SAR) DNA. Curr Top Microbiol Immunol. 1996;211:259–268. PubMed

Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA. 1994;91(22):10610–10614. doi: 10.1073/pnas.91.22.10610. PubMed DOI PMC

Ozgenc A, Loeb LA. Current advances in unraveling the function of the Werner syndrome protein. Mutat Res. 2005;577(1-2):237–251. PubMed

Hanada K, Hickson ID. Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci. 2007;64(17):2306–2322. doi: 10.1007/s00018-007-7121-z. PubMed DOI PMC

Compton SA, Tolun G, Kamath-Loeb AS, Loeb LA, Griffith JD. The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J Biol Chem. 2008;283(36):24478–24483. doi: 10.1074/jbc.M803370200. PubMed DOI PMC

Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401(6753):616–620. doi: 10.1038/44188. PubMed DOI

Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–654. doi: 10.1038/nrc2682. PubMed DOI

Jett SD, Cherny DI, Subramaniam V, Jovin TM. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. J Mol Biol. 2000;299(3):585–592. doi: 10.1006/jmbi.2000.3759. PubMed DOI

Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. Embo J. 1991;10(13):4381–4389. PubMed PMC

Biertumpfel C, Yang W, Suck D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature. 2007;449(7162):616–620. doi: 10.1038/nature06152. PubMed DOI

Pan PS, Curtis FA, Carroll CL, Medina I, Liotta LA, Sharples GJ, McAlpine SR. Novel antibiotics: C-2 symmetrical macrocycles inhibiting Holliday junction DNA binding by E. coli RuvC. Bioorg Med Chem. 2006;14(14):4731–4739. doi: 10.1016/j.bmc.2006.03.028. PubMed DOI

Fogg JM, Schofield MJ, Declais AC, Lilley DM. Yeast resolving enzyme CCE1 makes sequential cleavages in DNA junctions within the lifetime of the complex. Biochemistry. 2000;39(14):4082–4089. doi: 10.1021/bi992785v. PubMed DOI

Garcia AD, Otero J, Lebowitz J, Schuck P, Moss B. Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem. 2006;281(17):11618–11626. doi: 10.1074/jbc.M600182200. PubMed DOI

Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T. A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. 2005;435(7045):1059–1066. doi: 10.1038/nature03657. PubMed DOI PMC

Declais AC, Liu J, Freeman AD, Lilley DM. Structural recognition between a four-way DNA junction and a resolving enzyme. J Mol Biol. 2006;359(5):1261–1276. doi: 10.1016/j.jmb.2006.04.037. PubMed DOI

Guan C, Kumar S. A single catalytic domain of the junction-resolving enzyme T7 endonuclease I is a non-specific nicking endonuclease. Nucleic Acids Res. 2005;33(19):6225–6234. doi: 10.1093/nar/gki921. PubMed DOI PMC

Hadden JM, Declais AC, Carr SB, Lilley DM, Phillips SE. The structural basis of Holliday junction resolution by T7 endonuclease I. Nature. 2007;449(7162):621–624. doi: 10.1038/nature06158. PubMed DOI

Spiro C, McMurray CT. Switching of DNA secondary structure in proenkephalin transcriptional regulation. J Biol Chem. 1997;272(52):33145–33152. doi: 10.1074/jbc.272.52.33145. PubMed DOI

Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Res. 2004;32(18):5442–5451. doi: 10.1093/nar/gkh869. PubMed DOI PMC

Lyu YL, Lin CT, Liu LF. Inversion/dimerization of plasmids mediated by inverted repeats. J Mol Biol. 1999;285(4):1485–1501. doi: 10.1006/jmbi.1998.2419. PubMed DOI

Giraud-Panis MJ, Lilley DM. Near-simultaneous DNA cleavage by the subunits of the junction-resolving enzyme T4 endonuclease VII. Embo J. 1997;16(9):2528–2534. doi: 10.1093/emboj/16.9.2528. PubMed DOI PMC

Macmaster R, Sedelnikova S, Baker PJ, Bolt EL, Lloyd RG, Rafferty JB. RusA Holliday junction resolvase: DNA complex structure--insights into selectivity and specificity. Nucleic Acids Res. 2006;34(19):5577–5584. doi: 10.1093/nar/gkl447. PubMed DOI PMC

Owen BA, W HL, McMurray CT. The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat Struct Mol Biol. 2009;16(5):550–557. doi: 10.1038/nsmb.1596. PubMed DOI PMC

Surtees JA, Alani E. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol. 2006;360(3):523–536. doi: 10.1016/j.jmb.2006.05.032. PubMed DOI

Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y. Crystal structure of the Mus81-Eme1 complex. Genes Dev. 2008;22(8):1093–1106. doi: 10.1101/gad.1618708. PubMed DOI PMC

Ehmsen KT, Heyer WD. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 2008;36(7):2182–2195. doi: 10.1093/nar/gkm1152. PubMed DOI PMC

Taylor ER, McGowan CH. Cleavage mechanism of human Mus81-Eme1 acting on Holliday-junction structures. Proc Natl Acad Sci USA. 2008;105(10):3757–3762. doi: 10.1073/pnas.0710291105. PubMed DOI PMC

Fouche N, Cesare AJ, Willcox S, Ozgur S, Compton SA, Griffith JD. The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J Biol Chem. 2006;281(49):37486–37495. doi: 10.1074/jbc.M608778200. PubMed DOI

Lee JH, Park CJ, Arunkumar AI, Chazin WJ, Choi BS. NMR study on the interaction between RPA and DNA decamer containing cis-syn cyclobutane pyrimidine dimer in the presence of XPA: implication for damage verification and strand-specific dual incision in nucleotide excision repair. Nucleic Acids Res. 2003;31(16):4747–4754. doi: 10.1093/nar/gkg683. PubMed DOI PMC

Sekelsky JJ, Hollis KJ, Eimerl AI, Burtis KC, Hawley RS. Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res. 2000;459(3):219–228. PubMed

Lee S, Cavallo L, Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem. 1997;272(11):7532–7539. doi: 10.1074/jbc.272.11.7532. PubMed DOI

Ma B, Levine AJ. Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Res. 2007;35(22):7733–7747. doi: 10.1093/nar/gkm890. PubMed DOI PMC

Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol. 2005;25(11):4476–4487. doi: 10.1128/MCB.25.11.4476-4487.2005. PubMed DOI PMC

Rass U, Kemper B. Crp1p, a new cruciform DNA-binding protein in the yeast Saccharomyces cerevisiae. J Mol Biol. 2002;323(4):685–700. doi: 10.1016/S0022-2836(02)00993-2. PubMed DOI

van Houte LP, Chuprina VP, van der Wetering M, Boelens R, Kaptein R, Clevers H. Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem. 1995;270(51):30516–30524. doi: 10.1074/jbc.270.51.30516. PubMed DOI

Pearson CE, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry. 1994;33(47):14185–14196. doi: 10.1021/bi00251a030. PubMed DOI

Nakamura Y, Yoshioka K, Shirakawa H, Yoshida M. HMG box A in HMG2 protein functions as a mediator of DNA structural alteration together with box B. J Biochem. 2001;129(4):643–651. PubMed

Culard F, Gervais A, de Vuyst G, Spotheim-Maurizot M, Charlier M. Response of a DNA-binding protein to radiation-induced oxidative stress. J Mol Biol. 2003;328(5):1185–1195. doi: 10.1016/S0022-2836(03)00361-9. PubMed DOI

Tripathi P, Pal D, Muniyappa K. Saccharomyces cerevisiae Hop1 protein zinc finger motif binds to the Holliday junction and distorts the DNA structure: implications for holliday junction migration. Biochemistry. 2007;46(44):12530–12542. doi: 10.1021/bi701078v. PubMed DOI

Tripathi P, Anuradha S, Ghosal G, Muniyappa K. Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution. J Mol Biol. 2006;364(4):599–611. doi: 10.1016/j.jmb.2006.08.096. PubMed DOI

Rene B, Fermandjian S, Mauffret O. Does topoisomerase II specifically recognize and cleave hairpins, cruciforms and crossovers of DNA? Biochimie. 2007;89(4):508–515. doi: 10.1016/j.biochi.2007.02.011. PubMed DOI

Dip R, Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. Faseb J. 2005;19(7):704–715. doi: 10.1096/fj.04-3041rev. PubMed DOI

Bonnefoy E, Takahashi M, Yaniv JR. DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol. 1994;242(2):116–129. doi: 10.1006/jmbi.1994.1563. PubMed DOI

Pinson V, Takahashi M, Rouviere-Yaniv J. Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol. 1999;287(3):485–497. doi: 10.1006/jmbi.1999.2631. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymorphic potential of SRF binding site of c-Fos gene promoter: in vitro study

. 2024 Nov 25 ; 14 (51) : 38253-38267. [epub] 20241203

Special Issue "Bioinformatics of Unusual DNA and RNA Structures"

. 2024 May 10 ; 25 (10) : . [epub] 20240510

Non-canonical DNA structures in the human ribosomal DNA

. 2023 Dec ; 160 (6) : 499-515. [epub] 20230926

Variability of Inverted Repeats in All Available Genomes of Bacteria

. 2023 Aug 17 ; 11 (4) : e0164823. [epub] 20230626

Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids

. 2022 May 31 ; 23 (11) : . [epub] 20220531

G-quadruplexes in helminth parasites

. 2022 Mar 21 ; 50 (5) : 2719-2735.

Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain

. 2022 Jan 11 ; 23 (2) : . [epub] 20220111

R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences

. 2021 Nov 27 ; 22 (23) : . [epub] 20211127

SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci

. 2021 Mar 22 ; 22 (2) : 1338-1345.

G-quadruplexes in H1N1 influenza genomes

. 2021 Jan 23 ; 22 (1) : 77. [epub] 20210123

Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins

. 2021 Jan 18 ; 22 (2) : . [epub] 20210118

In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles

. 2020 ; 11 () : 1583. [epub] 20200703

Structures and stability of simple DNA repeats from bacteria

. 2020 Jan 31 ; 477 (2) : 325-339.

The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms

. 2019 Dec 24 ; 21 (1) : . [epub] 20191224

The Rich World of p53 DNA Binding Targets: The Role of DNA Structure

. 2019 Nov 09 ; 20 (22) : . [epub] 20191109

G4Hunter web application: a web server for G-quadruplex prediction

. 2019 Sep 15 ; 35 (18) : 3493-3495.

The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria

. 2019 May 02 ; 24 (9) : . [epub] 20190502

The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors

. 2018 Sep 13 ; 23 (9) : . [epub] 20180913

Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs

. 2018 ; 2018 () : 1097018. [epub] 20180724

p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms

. 2018 ; 13 (4) : e0195835. [epub] 20180418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...