Role of tumor suppressor p53 domains in selective binding to supercoiled DNA
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12434001
PubMed Central
PMC137164
DOI
10.1093/nar/gkf616
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- lidé MeSH
- makromolekulární látky MeSH
- molekulární sekvence - údaje MeSH
- nádorový supresorový protein p53 chemie metabolismus ultrastruktura MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční delece MeSH
- superhelikální DNA metabolismus ultrastruktura MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- makromolekulární látky MeSH
- nádorový supresorový protein p53 MeSH
- rekombinantní fúzní proteiny MeSH
- superhelikální DNA MeSH
We showed previously that bacterially expressed full-length human wild-type p53b(1-393) binds selectively to supercoiled (sc)DNA in sc/linear DNA competition experiments, a process we termed supercoil-selective (SCS) binding. Using p53 deletion mutants and pBluescript scDNA (lacking the p53 recognition sequence) at native superhelix density we demonstrate here that the p53 C-terminal domain (amino acids 347-382) and a p53 oligomeric state are important for SCS binding. Monomeric p53(361-393) protein (lacking the p53 tetramerization domain, amino acids 325-356) did not exhibit SCS binding while both dimeric mutant p53(319- 393)L344A and fusion protein GCN4-p53(347-393) were effective in SCS binding. Supershifting of p53(320-393)-scDNA complexes with monoclonal antibodies revealed that the amino acid region 375-378, constituting the epitope of the Bp53-10.1 antibody, plays a role in binding of the p53(320-393) protein to scDNA. Using electron microscopy we observed p53-scDNA nucleoprotein filaments produced by all the C-terminal proteins that displayed SCS binding in the gel electrophoresis experiments; no filaments formed with the monomeric p53(361- 393) protein. We propose a model according to which two DNA duplexes are compacted into p53-scDNA filaments and discuss a role for filament formation in recombination.
Zobrazit více v PubMed
Oren M. and Rotter,V. (1999) Introduction: p53—the first twenty years. Cell. Mol. Life Sci., 55, 9–11. PubMed PMC
Vogelstein B., Lane,D. and Levine,A.J. (2000) Surfing the p53 network. Nature, 408, 307–310. PubMed
Appella E. and Anderson,C.W. (2001) Post-translational modifications and activation of p53 by stresses. Eur. J. Biochem., 268, 2764–2772. PubMed
Albrechtsen N., Dornreiter,I., Grosse,F., Kim,E., Wiesmuller,L. and Deppert,W. (1999) Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene, 18, 7706–7717. PubMed
Hupp T.R. (1999) Regulation of p53 protein function through alterations in protein-folding pathways. Cell. Mol. Life Sci., 55, 88–95. PubMed PMC
Jayaraman L. and Prives,C. (1999) Covalent and noncovalent modifiers of the p53 protein. Cell. Mol. Life Sci., 55, 76–87. PubMed PMC
El-Deiry W.S., Kern,S.E., Pietenpol,J.A., Kinzler,K.W. and Vogelstein,B. (1992) Definition of a consensus binding site for p53. Nature Genet., 1, 45–49. PubMed
Bakalkin G., Selivanova,G., Yakovleva,T., Kiseleva,E., Kashuba,E., Magnusson,K.P., Szekely,L., Klein,G., Terenius,L. and Wiman,K.G. (1995) p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res., 23, 362–369. PubMed PMC
Dudenhoffer C., Kurth,M., Janus,F., Deppert,W. and Wiesmuller,L. (1999) Dissociation of the recombination control and the sequence-specific transactivation function of p53. Oncogene, 18, 5773–5784. PubMed
Szak S.T. and Pietenpol,J.A. (1999) High affinity insertion/deletion lesion binding by p53. Evidence for a role of the p53 central domain. J. Biol. Chem., 274, 3904–3909. PubMed
Jett S.D., Cherny,D.I., Subramaniam,V. and Jovin,T.M. (2000) Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. J. Mol. Biol., 299, 585–592. PubMed
Janus F., Albrechtsen,N., Knippschild,U., Wiesmuller,L., Grosse,F. and Deppert,W. (1999) Different regulation of the p53 core domain activities 3′-to-5′ exonuclease and sequence-specific DNA binding. Mol. Cell. Biol., 19, 2155–2168. PubMed PMC
Hainaut P., Hernandez,T., Robinson,A., Rodriguez-Tome,P., Flores,T., Hollstein,M., Harris,C.C. and Montesano,R. (1998) IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res., 26, 205–213. PubMed PMC
Zotchev S.B., Protopopova,M. and Selivanova,G. (2000) p53 C-terminal interaction with DNA ends and gaps has opposing effect on specific DNA binding by the core. Nucleic Acids Res., 28, 4005–4012. PubMed PMC
Reed M., Woelker,B., Wang,P., Wang,Y., Anderson,M.E. and Tegtmeyer,P. (1995) The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc. Natl Acad. Sci. USA, 92, 9455–9459. PubMed PMC
Bakalkin G., Yakovleva,T., Selivanova,G., Magnusson,K.P., Szekely,L., Kiseleva,E., Klein,G., Terenius,L. and Wiman,K.G. (1994) p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl Acad. Sci. USA, 91, 413–417. PubMed PMC
Paleček E., Vlk,D., Stankova,V., Brazda,V., Vojtěšek,B., Hupp,T.R., Schaper,A. and Jovin,T.M. (1997) Tumor suppresor protein p53 binds preferentially to supercoiled DNA. Oncogene, 15, 2201–2209. PubMed
Mazur S.J., Sakaguchi,K., Appella,E., Wang,X.W., Harris,C.C. and Bohr,V.A. (1999) Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J. Mol. Biol., 292, 241–249. PubMed
Fojta M., Kubicarova,T., Vojtěšek,B. and Paleček,E. (1999) Effect of p53 protein redox states on binding to supercoiled DNA and linear DNA. J. Biol. Chem., 274, 25749–25755. PubMed
Paleček E., Brázdová,M., Brazda,V., Paleček,J., Billová,S., Subramaniam,V. and Jovin,T.M. (2001) Binding of p53 and its core domain to supercoiled DNA. Eur. J. Biochem., 268, 573–581. PubMed
Fojta M., Brázdová,M., Cernocka,H., Pečinka,P., Brazda,V., Paleček,J., Jagelska,E., Vojtěšek,B., Pospisilova,S., Subramaniam,V. et al. (2000) Effects of oxidation agents and metal ions on binding of p53 to supercoiled DNA. J. Biomol. Struct. Dyn., Sp. Iss. S1, 177–184. PubMed
Kirkegaard K. and Wang,J.C. (1985) Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J. Mol. Biol., 185, 625–637. PubMed
Zechiedrich E.L. and Osheroff,N. (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J., 9, 4555–4562. PubMed PMC
Stros M. and Reich,J. (1998) Formation of large nucleoprotein complexes upon binding of the high-mobility-group (HMG) box B-domain of HMG1 protein to supercoiled DNA. Eur. J. Biochem., 251, 427–434. PubMed
Midgley C.A., Fisher,C.J., Bartek,J., Vojtěšek,B., Lane,D. and Barnes,D.M. (1992) Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J. Cell Sci., 101, 183–189. PubMed
Cho Y., Gorina,S., Jeffrey,P.D. and Pavletich,N.P. (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265, 346–355. PubMed
Sambrook J., Fritsch,E.F. and Maniatis,T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Waterman J.L., Shenk,J.L. and Halazonetis,T.D. (1995) The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. EMBO J., 14, 512–519. PubMed PMC
Cherny D.I., Striker,G., Subramaniam,V., Jett,S.D., Paleček,E. and Jovin,T.M. (1999) DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. J. Mol. Biol., 294, 1015–1026. PubMed
Hupp T.R., Meek,D.W., Midgley,C.A. and Lane,D.P. (1992) Regulation of the specific DNA binding function of p53. Cell, 71, 875–886. PubMed
Brázdová M., Kizek,R., Havran,L. and Paleček,E. (2002) Determination of glutathione-S-transferase traces in preparations of p53 C-terminal domain (aa320–393). Bioelectrochemistry, 55, 115–118. PubMed
Brazda V., Paleček,J., Pospisilova,S., Vojtěšek,B. and Paleček,E. (2000) Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem. Biophys. Res. Commun., 267, 934–939. PubMed
Hupp T.R. and Lane,D.P. (1995) Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner. J. Biol. Chem., 270, 18165–18174. PubMed
Pospisilova S., Brazda,V., Amrichova,J., Kamermeierova,R., Paleček,E. and Vojtěšek,B. (2000) Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay. J. Immunol. Methods, 237, 51–64. PubMed
Ellenberger T.E., Brandl,C.J., Struhl,K. and Harrison,S.C. (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell, 71, 1223–1237. PubMed
Maru Y., Afar,D.E., Witte,O.N. and Shibuya,M. (1996) The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain. J. Biol. Chem., 271, 15353–15357. PubMed
Cherny D.I. and Jovin,T.M. (2001) Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J. Mol. Biol., 313, 295–307. PubMed
Paleček E., Brázdová,M., Cernocka,H., Vlk,D., Brazda,V. and Vojtěšek,B. (1999) Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments. Oncogene, 18, 3617–3625. PubMed
Paleček E. (1991) Local supercoil-stabilized DNA structures. Crit. Rev. Biochem. Mol. Biol., 26, 151–226. PubMed
Lyubchenko Y.L. and Shlyakhtenko,L.S. (1997) Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl Acad. Sci. USA, 94, 496–501. PubMed PMC
Yakovleva T., Pramanik,A., Kawasaki,T., Tan-No,K., Gileva,I., Lindegren,H., Langel,U., Ekstrom,T.J., Rigler,R., Terenius,L. et al. (2001) p53 latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J. Biol. Chem., 276, 15650–15658. PubMed
Stenger J.E., Mayr,G.A., Mann,K. and Tegtmeyer,P. (1992) Formation of stable p53 homotetramers and multiples of tetramers. Mol. Carcinog., 5, 102–106. PubMed
Pavletich N.P., Chambers,K.A. and Pabo,C.O. (1993) The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev., 7, 2556–2564. PubMed
Shuman S., Bear,D.G. and Sekiguchi,J. (1997) Intramolecular synapsis of duplex DNA by vaccinia topoisomerase. EMBO J., 16, 6584–6589. PubMed PMC
Lee S., Cavallo,L. and Griffith,J. (1997) Human p53 binds Holliday junctions strongly and facilitates their cleavage. J. Biol. Chem., 272, 7532–7539. PubMed
Sturzbecher H.W., Donzelmann,B., Henning,W., Knippschild,U. and Buchhop,S. (1996) p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J., 15, 1992–2002. PubMed PMC
Prabhu V.P., Simons,A.M., Iwasaki,H., Gai,D., Simmons,D.T. and Chen,J. (2002) p53 blocks RuvAB promoted branch migration and modulates resolution of Holliday junctions by RuvC. J. Mol. Biol., 316, 1023–1032. PubMed
Susse S., Janz,C., Janus,F., Deppert,W. and Wiesmuller,L. (2000) Role of heteroduplex joints in the functional interactions between human rad51 and wild-type p53. Oncogene, 19, 4500–4512. PubMed
p53 Specifically Binds Triplex DNA In Vitro and in Cells
Wild-type p53 binds to MYC promoter G-quadruplex
Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells
Cruciform structures are a common DNA feature important for regulating biological processes