p53 Binds Preferentially to Non-B DNA Structures Formed by the Pyrimidine-Rich Strands of GAA·TTC Trinucleotide Repeats Associated with Friedreich's Ataxia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15168S
Grantová Agentura České Republiky
16-01625S
Grantová Agentura České Republiky
GJ17-19170Y
Grantová Agentura České Republiky
313/2017/FAF
IGA VFU Brno
314/2017/FAF
IGA VFU Brno
RVO68081707
Akademie Věd České Republiky
692068
H2020-TWINN-2015, BISON project
CZ.1.05/2.1.00/19.0388
European Regional Development Fund
LO1208
European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000477
European Regional Development Fund
PubMed
31159174
PubMed Central
PMC6600395
DOI
10.3390/molecules24112078
PII: molecules24112078
Knihovny.cz E-zdroje
- Klíčová slova
- DNA hairpin, DNA–protein, frataxin, non-B DNA, p53, trinucleotide repeat,
- MeSH
- DNA chemie metabolismus MeSH
- expanze trinukleotidových repetic * MeSH
- exprese genu MeSH
- Friedreichova ataxie genetika metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie metabolismus MeSH
- pyrimidiny MeSH
- rekombinantní proteiny MeSH
- trinukleotidové repetice * MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- nádorový supresorový protein p53 MeSH
- pyrimidiny MeSH
- rekombinantní proteiny MeSH
- TP53 protein, human MeSH Prohlížeč
Expansions of trinucleotide repeats (TNRs) are associated with genetic disorders such as Friedreich's ataxia. The tumor suppressor p53 is a central regulator of cell fate in response to different types of insults. Sequence and structure-selective modes of DNA recognition are among the main attributes of p53 protein. The focus of this work was analysis of the p53 structure-selective recognition of TNRs associated with human neurodegenerative diseases. Here, we studied binding of full length p53 and several deletion variants to TNRs folded into DNA hairpins or loops. We demonstrate that p53 binds to all studied non-B DNA structures, with a preference for non-B DNA structures formed by pyrimidine (Py) rich strands. Using deletion mutants, we determined the C-terminal DNA binding domain of p53 to be crucial for recognition of such non-B DNA structures. We also observed that p53 in vitro prefers binding to the Py-rich strand over the purine (Pu) rich strand in non-B DNA substrates formed by sequence derived from the first intron of the frataxin gene. The binding of p53 to this region was confirmed using chromatin immunoprecipitation in human Friedreich's ataxia fibroblast and adenocarcinoma cells. Altogether these observations provide further evidence that p53 binds to TNRs' non-B DNA structures.
Faculty of Science University of Ostrava Chittussiho 10 701 03 Ostrava Czech Republic
School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
Zobrazit více v PubMed
Lane D.P. Cancer. p53, guardian of the genome. Nature. 1992;358:15–16. doi: 10.1038/358015a0. PubMed DOI
Laptenko O., Prives C. p53: master of life, death, and the epigenome. Genes Dev. 2017;31:955–956. doi: 10.1101/gad.302364.117. PubMed DOI PMC
el-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992;1:45–49. doi: 10.1038/ng0492-45. PubMed DOI
Zotchev S.B., Protopopova M., Selivanova G. p53 C-terminal interaction with DNA ends and gaps has opposing effect on specific DNA binding by the core. Nucleic Acids Res. 2000;28:4005–4012. doi: 10.1093/nar/28.20.4005. PubMed DOI PMC
Brazdova M., Palecek J., Cherny D.I., Billova S., Fojta M., Pecinka P., Vojtesek B., Jovin T.M., Palecek E. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 2002;30:4966–4974. doi: 10.1093/nar/gkf616. PubMed DOI PMC
Adamik M., Kejnovska I., Bazantova P., Petr M., Renciuk D., Vorlickova M., Brazdova M. p53 binds human telomeric G-quadruplex in vitro. Biochimie. 2016:83–91. doi: 10.1016/j.biochi.2016.07.004. PubMed DOI
Quante T., Otto B., Brazdova M., Kejnovska I., Deppert W., Tolstonog G.V. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle. 2012;11:3290–3303. doi: 10.4161/cc.21646. PubMed DOI PMC
Brazdova M., Tichy V., Helma R., Bazantova P., Polaskova A., Krejci A., Petr M., Navratilova L., Ticha O., Nejedly K., et al. p53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS ONE. 2016;11:e0167439. doi: 10.1371/journal.pone.0167439. PubMed DOI PMC
Petr M., Helma R., Polaskova A., Krejci A., Dvorakova Z., Kejnovska I., Navratilova L., Adamik M., Vorlickova M., Brazdova M. Wild-type p53 binds to MYC promoter G-quadruplex. Biosci. Rep. 2016:36. doi: 10.1042/BSR20160232. PubMed DOI PMC
Bacolla A., Wojciechowska M., Kosmider B., Larson J.E., Wells R.D. The involvement of non-B DNA structures in gross chromosomal rearrangements. DNA Repair. 2006;5:1161–1170. doi: 10.1016/j.dnarep.2006.05.032. PubMed DOI
Kozlowski P., de Mezer M., Krzyzosiak W.J. Trinucleotide repeats in human genome and exome. Nucleic Acids Res. 2010;38:4027–4039. doi: 10.1093/nar/gkq127. PubMed DOI PMC
Pearson C.E., Sinden R.R. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 1998;8:321–330. doi: 10.1016/S0959-440X(98)80065-1. PubMed DOI
Sinden R.R., Pytlos-Sinden M.J., Potaman V.N. Slipped strand DNA structures. Front. Biosci. 2007;12:4788–4799. doi: 10.2741/2427. PubMed DOI
Zhao J., Bacolla A., Wang G., Vasquez K.M. Non-B DNA structure-induced genetic instability and evolution. CMLS. 2010;67:43–62. doi: 10.1007/s00018-009-0131-2. PubMed DOI PMC
Schmidt M.H., Pearson C.E. Disease-associated repeat instability and mismatch repair. DNA Repair. 2016;38:117–126. doi: 10.1016/j.dnarep.2015.11.008. PubMed DOI
Sinden R.R., Potaman V.N., Oussatcheva E.A., Pearson C.E., Lyubchenko Y.L., Shlyakhtenko L.S. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J. Biosci. 2002;27:53–65. doi: 10.1007/BF02703683. PubMed DOI
Andrew S.E., Goldberg Y.P., Kremer B., Telenius H., Theilmann J., Adam S., Starr E., Squitieri F., Lin B., Kalchman M.A., et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat. Genet. 1993;4:398–403. doi: 10.1038/ng0893-398. PubMed DOI
Walter K., Warnecke G., Bowater R., Deppert W., Kim E. tumor suppressor p53 binds with high affinity to CTG.CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. J. Biol. Chem. 2005;280:42497–42507. doi: 10.1074/jbc.M507038200. PubMed DOI
Cobb A.M., Jackson B.R., Kim E., Bond P.L., Bowater R.P. Sequence-specific and DNA structure-dependent interactions of Escherichia coli MutS and human p53 with DNA. Anal. Biochem. 2013;442:51–61. doi: 10.1016/j.ab.2013.07.033. PubMed DOI
Bacolla A., Wells R.D. Non-B DNA conformations as determinants of mutagenesis and human disease. Mol. Carcinogenes. 2009;48:273–285. doi: 10.1002/mc.20507. PubMed DOI
Campuzano V., Montermini L., Molto M.D., Pianese L., Cossee M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A., et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–1427. doi: 10.1126/science.271.5254.1423. PubMed DOI
Rajeswari M.R. DNA triplex structures in neurodegenerative disorder, Friedreich’s ataxia. J. Biosci. 2012;37:519–532. doi: 10.1007/s12038-012-9219-1. PubMed DOI
Heidenfelder B.L., Makhov A.M., Topal M.D. Hairpin formation in Friedreich’s ataxia triplet repeat expansion. J. Biol. Chem. 2003;278:2425–2431. doi: 10.1074/jbc.M210643200. PubMed DOI
LeProust E.M., Pearson C.E., Sinden R.R., Gao X. Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich’s ataxia. J. Mol. Biol. 2000;302:1063–1080. doi: 10.1006/jmbi.2000.4073. PubMed DOI
Mariappan S.V., Catasti P., Silks L.A., Bradbury E.M., Gupta G. The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich’s ataxia. J. Mol. Biol. 1999;285:2035–2052. doi: 10.1006/jmbi.1998.2435. PubMed DOI
Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997;25:2245–2254. doi: 10.1093/nar/25.12.2245. PubMed DOI PMC
Potaman V.N., Oussatcheva E.A., Lyubchenko Y.L., Shlyakhtenko L.S., Bidichandani S.I., Ashizawa T., Sinden R.R. Length-dependent structure formation in Friedreich ataxia (GAA)n*(TTC)n repeats at neutral pH. Nucleic Acids Res. 2004;32:1224–1231. doi: 10.1093/nar/gkh274. PubMed DOI PMC
Sawamoto M., Imai T., Umeda M., Fukuda K., Kataoka T., Taketani S. The p53-dependent expression of frataxin controls 5-aminolevulinic acid-induced accumulation of protoporphyrin IX and photo-damage in cancerous cells. Photochem. Photobiol. 2013;89:163–172. doi: 10.1111/j.1751-1097.2012.01215.x. PubMed DOI
Shimizu R., Lan N.N., Tai T.T., Adachi Y., Kawazoe A., Mu A., Taketani S. p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron. Gene. 2014;551:79–85. doi: 10.1016/j.gene.2014.08.043. PubMed DOI
Mouli S., Nanayakkara G., AlAlasmari A., Eldoumani H., Fu X., Berlin A., Lohani M., Nie B., Arnold R.D., Kavazis A., et al. The role of frataxin in doxorubicin-mediated cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2015;309:844–859. doi: 10.1152/ajpheart.00182.2015. PubMed DOI
Lupoli F., Vannocci T., Longo G., Niccolai N., Pastore A. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett. 2018;592:718–727. doi: 10.1002/1873-3468.12928. PubMed DOI PMC
Marmolino D., Acquaviva F. Friedreich’s Ataxia: From the (GAA)n repeat mediated silencing to new promising molecules for therapy. Cerebellum. 2009;8:245–259. doi: 10.1007/s12311-008-0084-2. PubMed DOI
Fojta M., Kubicarova T., Vojtesek B., Palecek E. Effect of p53 protein redox states on binding to supercoiled and linear DNA. J. Biol. Chem. 1999;274:25749–25755. doi: 10.1074/jbc.274.36.25749. PubMed DOI
Bacolla A., Tainer J.A., Vasquez K.M., Cooper D.N. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res. 2016;44:5673–5688. doi: 10.1093/nar/gkw261. PubMed DOI PMC
Neil A.J., Kim J.C., Mirkin S.M. Precarious maintenance of simple DNA repeats in eukaryotes. BioEssays. 2017:39. doi: 10.1002/bies.201700077. PubMed DOI PMC
Hampp S., Kiessling T., Buechle K., Mansilla S.F., Thomale J., Rall M., Ahn J., Pospiech H., Gottifredi V., Wiesmuller L. DNA damage tolerance pathway involving DNA polymerase iota and the tumor suppressor p53 regulates DNA replication fork progression. Proc. Natl. Acad. Sci. USA. 2016;113:4311–4319. doi: 10.1073/pnas.1605828113. PubMed DOI PMC
Kim E., Deppert W. The complex interactions of p53 with target DNA: We learn as we go. Biochem. Cell Biol. 2003;81:141–150. doi: 10.1139/o03-046. PubMed DOI
Sakamoto N., Larson J.E., Iyer R.R., Montermini L., Pandolfo M., Wells R.D. GGA*TCC-interrupted triplets in long GAA*TTC repeats inhibit the formation of triplex and sticky DNA structures, alleviate transcription inhibition, and reduce genetic instabilities. J. Biol. Chem. 2001;276:27178–27187. doi: 10.1074/jbc.M101852200. PubMed DOI
Singh S.K., Qiao Z., Song L., Jani V., Rice W., Eng E., Coleman R.A., Liu W.L. Structural visualization of the p53/RNA polymerase II assembly. Genes Dev. 2016;30:2527–2537. doi: 10.1101/gad.285692.116. PubMed DOI PMC
Brazdova M., Navratilova L., Tichy V., Nemcova K., Lexa M., Hrstka R., Pecinka P., Adamik M., Vojtesek B., Palecek E., et al. Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS ONE. 2013;8:e59567. doi: 10.1371/journal.pone.0059567. PubMed DOI PMC
Laptenko O., Shiff I., Freed-Pastor W., Zupnick A., Mattia M., Freulich E., Shamir I., Kadouri N., Kahan T., Manfredi J., et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol. Cell. 2015;57:1034–1046. doi: 10.1016/j.molcel.2015.02.015. PubMed DOI PMC
Clark R.M., Bhaskar S.S., Miyahara M., Dalgliesh G.L., Bidichandani S.I. Expansion of GAA trinucleotide repeats in mammals. Genomics. 2006;87:57–67. doi: 10.1016/j.ygeno.2005.09.006. PubMed DOI
G-quadruplexes in helminth parasites
Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure