G-quadruplexes in helminth parasites
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35234933
PubMed Central
PMC8934627
DOI
10.1093/nar/gkac129
PII: 6541030
Knihovny.cz E-resources
- MeSH
- Helminths genetics MeSH
- G-Quadruplexes * MeSH
- Genome MeSH
- Nematoda * genetics MeSH
- Humans MeSH
- Ligands MeSH
- Parasites genetics MeSH
- Platyhelminths * genetics MeSH
- Cattle MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ligands MeSH
Parasitic helminths infecting humans are highly prevalent infecting ∼2 billion people worldwide, causing inflammatory responses, malnutrition and anemia that are the primary cause of morbidity. In addition, helminth infections of cattle have a significant economic impact on livestock production, milk yield and fertility. The etiological agents of helminth infections are mainly Nematodes (roundworms) and Platyhelminths (flatworms). G-quadruplexes (G4) are unusual nucleic acid structures formed by G-rich sequences that can be recognized by specific G4 ligands. Here we used the G4Hunter Web Tool to identify and compare potential G4 sequences (PQS) in the nuclear and mitochondrial genomes of various helminths to identify G4 ligand targets. PQS are nonrandomly distributed in these genomes and often located in the proximity of genes. Unexpectedly, a Nematode, Ascaris lumbricoides, was found to be highly enriched in stable PQS. This species can tolerate high-stability G4 structures, which are not counter selected at all, in stark contrast to most other species. We experimentally confirmed G4 formation for sequences found in four different parasitic helminths. Small molecules able to selectively recognize G4 were found to bind to Schistosoma mansoni G4 motifs. Two of these ligands demonstrated potent activity both against larval and adult stages of this parasite.
CNRS UMR9187 INSERM U1196 Institut Curie PSL Research University F 91405 Orsay France
CNRS UMR9187 INSERM U1196 Université Paris Saclay F 91405 Orsay France
Faculty of Chemistry Brno University of Technology Purkyňova 118 612 00 Brno Czech Republic
Institute of Biophysics Czech Academy of Sciences Královopolská 135 612 65 Brno Czech Republic
See more in PubMed
Hotez P.J., Bundy D.A.P., Beegle K., Brooker S., Drake L., de Silva N., Montresor A., Engels D., Jukes M., Chitsulo L.et al. .. Jamison D.T., Breman J.G., Measham A.R., Alleyne G., Claeson M., Evans D.B., Jha P., Mills A., Musgrove P.. Helminth Infections: soil-transmitted helminth infections and schistosomiasis. Disease Control Priorities in Developing Countries. 2006; 2nd ednWashington (DC).
Bethony J., Brooker S., Albonico M., Geiger S.M., Loukas A., Diemert D., Hotez P.J.. Soil-transmitted helminth infections: ascariasis, trichuriasis and hookworm. The Lancet. 2006; 367:1521–1532. PubMed
Verjee MA. Schistosomiasis: still a cause of significant morbidity and mortality. Res. Rep. Trop. Med. 2019; 10:153–163. PubMed PMC
Anderson T.J.C., Duraisingh M.T.. Transformative tools for parasitic flatworms. Science. 2020; 369:1562–1564. PubMed
Christian P., Khatry S.K., West K.P.. Antenatal anthelmintic treatment, birthweight, and infant survival in rural Nepal. Lancet. 2004; 364:981–983. PubMed
Charlier J., De Waele V., Ducheyne E., van der Voort M., Vande Velde F., Claerebout E.. Decision making on helminths in cattle: diagnostics, economics and human behaviour. Irish Vet. J. 2016; 69:14. PubMed PMC
de Silva N.R., Brooker S., Hotez P.J., Montresor A., Engels D., Savioli L.. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 2003; 19:547–551. PubMed
Nutman T.B. Human infection with Strongyloides stercoralis and other related Strongyloides species. Parasitology. 2017; 144:263–273. PubMed PMC
Colley D.G., Bustinduy A.L., Secor W.E., King C.H.. Human schistosomiasis. Lancet. 2014; 383:2253–2264. PubMed PMC
Thétiot-Laurent S.A.-L., Boissier J., Robert A., Meunier B.. Schistosomiasis chemotherapy. Angew. Chem. Int. Ed. 2013; 52:7936–7956. PubMed
Furtado L.F.V., de Paiva Bello A.C.P., Rabelo É.M.L.. Benzimidazole resistance in helminths: from problem to diagnosis. Acta Tropica. 2016; 162:95–102. PubMed
Bergquist R., Zhou X.-N., Rollinson D., Reinhard-Rupp J., Klohe K.. Elimination of schistosomiasis: the tools required. Infect. Dis. Poverty. 2017; 6:158. PubMed PMC
Berriman M., Haas B.J., LoVerde P.T., Wilson R.A., Dillon G.P., Cerqueira G.C., Mashiyama S.T., Al-Lazikani B., Andrade L.F., Ashton P.D.et al. .. The genome of the blood fluke Schistosoma mansoni. Nature. 2009; 460:352–358. PubMed PMC
Zhou Y., Zheng H., Chen Y., Zhang L., Wang K., Guo J., Huang Z., Zhang B., Huang W., Jin K.et al. .. The Schistosoma japonicum genome reveals features of host–parasite interplay. Nature. 2009; 460:345–351. PubMed PMC
Young N.D., Jex A.R., Li B., Liu S., Yang L., Xiong Z., Li Y., Cantacessi C., Hall R.S., Xu X.et al. .. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 2012; 44:221–225. PubMed
Kolesnikova S., Curtis E.A.. Structure and function of multimeric G-quadruplexes. Molecules. 2019; 24:3074. PubMed PMC
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S.. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006; 34:5402–5415. PubMed PMC
Lane A.N., Chaires J.B., Gray R.D., Trent J.O.. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 2008; 36:5482–5515. PubMed PMC
Yoshida W., Saikyo H., Nakabayashi K., Yoshioka H., Bay D.H., Iida K., Kawai T., Hata K., Ikebukuro K., Nagasawa K.et al. .. Identification of G-quadruplex clusters by high-throughput sequencing of whole-genome amplified products with a G-quadruplex ligand. Sci. Rep. 2018; 8:3116. PubMed PMC
Carvalho J., Mergny J.L., Salgado G.F., Queiroz J.A., Cruz C.. G-quadruplex, friend or foe: the role of the G-quartet in anticancer strategies. Trends Mol. Med. 2020; 26:848–861. PubMed
Balasubramanian S., Hurley L.H., Neidle S.. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy. Nat. Rev. Drug Discov. 2011; 10:261–275. PubMed PMC
Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H.. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:11593–11598. PubMed PMC
Sun Z.-Y., Wang X.-N., Cheng S.-Q., Su X.-X., Ou T.-M.. Developing novel G-quadruplex ligands: from interaction with nucleic acids to interfering with nucleic acid–protein interaction. Molecules. 2019; 24:396. PubMed PMC
Zhao J., Bacolla A., Wang G., Vasquez K.M.. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 2010; 67:43–62. PubMed PMC
Wong H.M., Huppert J.L.. Stable G-quadruplexes are found outside nucleosome-bound regions. Mol. BioSys. 2009; 5:1713–1719. PubMed
Marsico G., Chambers V.S., Sahakyan A.B., McCauley P., Boutell J.M., di Antonio M., Balasubramanian S.. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019; 47:3862–3874. PubMed PMC
Hoffmann R.F., Moshkin Y.M., Mouton S., Grzeschik N.A., Kalicharan R.D., Kuipers J., Wolters A.H.G., Nishida K., Romashchenko A.V., Postberg J.et al. .. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 2016; 44:152–163. PubMed PMC
Yu Q.-Q., Gao J.-J., Lang X.-X., Li H.-Y., Wang M.-Q.. Microenvironment-sensitive fluorescent ligand binds ascaris telomere antiparallel G-quadruplex DNA with blue-shift and enhanced emission. ChemBioChem. 2021; 22:1042–1048. PubMed
Craven H.M., Bonsignore R., Lenis V., Santi N., Berrar D., Swain M., Whiteland H., Casini A., Hoffmann K.F.. Identifying and validating the presence of guanine-quadruplexes (G4) within the blood fluke parasite Schistosoma mansoni. PLoS Negl. Trop. Dis. 2021; 15:e0008770. PubMed PMC
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J., Mergny J.L.. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019; 35:3493–3495. PubMed PMC
Mergny J.L., Phan A.T., Lacroix L.. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998; 435:74–78. PubMed
Luo Y., Granzhan A., Verga D., Mergny J.-L.. FRET-MC: a fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers. 2021; 112:e23415. PubMed
Mergny J.-L., Li J., Lacroix L., Amrane S., Chaires J.B.. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005; 33:e138. PubMed PMC
Renaud de la Faverie A., Guédin A., Bedrat A., Yatsunyk L.A., Mergny J.-L.. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014; 42:e65. PubMed PMC
Guillon J., Denevault-Sabourin C., Chevret E., Brachet-Botineau M., Milano V., Guédin-Beaurepaire A., Moreau S., Ronga L., Savrimoutou S., Rubio S.et al. .. Design, synthesis, and antiproliferative effect of 2,9-bis[4-(pyridinylalkylaminomethyl)phenyl]-1,10-phenanthroline derivatives on human leukemic cells by targeting G-quadruplex. Archiv. Pharmazie. 2021; 354:e2000450. PubMed
Guillon J., Cohen A., Das R.N., Boudot C., Gueddouda N.M., Moreau S., Ronga L., Savrimoutou S., Basmaciyan L., Tisnerat C.et al. .. Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives. Chem. Biol. Drug Des. 2018; 91:974–995. PubMed
Guillon J., Cohen A., Boudot C., Valle A., Milano V., Das R.N., Guédin A., Moreau S., Ronga L., Savrimoutou S.et al. .. Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives. J. Enz. Inhib. Med. Chem. 2020; 35:432–459. PubMed PMC
Lombardo F.C., Pasche V., Panic G., Endriss Y., Keiser J.. Life cycle maintenance and drug-sensitivity assays for early drug discovery in Schistosoma mansoni. Nat. Protoc. 2019; 14:461–481. PubMed
Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Coghlan A., Tyagi R., Cotton J.A., Holroyd N., Rosa B.A., Tsai I.J., Laetsch D.R., Beech R.N., Day T.A., Hallsworth-Pepin K.et al. .. Comparative genomics of the major parasitic worms. Nat. Gen. 2019; 51:163–174. PubMed PMC
Jourdan P.M., Lamberton P.H.L., Fenwick A., Addiss D.G.. Soil-transmitted helminth infections. Lancet. 2018; 391:252–265. PubMed
Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červen J., Pečinka P.. The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules. 2019; 24:1711. PubMed PMC
Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Šťastný J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S.et al. .. G-Quadruplexes in the archaea domain. Biomolecules. 2020; 10:1349. PubMed PMC
Wang J., Gao S., Mostovoy Y., Kang Y., Zagoskin M., Sun Y., Zhang B., White L.K., Easton A., Nutman T.B.et al. .. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res. 2017; 27:2001–2014. PubMed PMC
Bedrat A., Lacroix L., Mergny J.-L.. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–1759. PubMed PMC
Sengar A., Heddi B., Phan A.T.. Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G15 stretch. Biochemistry. 2014; 53:7718–7723. PubMed
Largy E., Granzhan A., Hamon F., Verga D., Teulade-Fichou M.P.. Visualizing the quadruplex: from fluorescent ligands to light-up probes. Top. Curr. Chem. 2013; 330:111–177. PubMed
Sabharwal N.C., Savikhin V., Turek-Herman J.R., Nicoludis J.M., Szalai V.A., Yatsunyk L.A.. N -methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J. 2014; 281:1726–1737. PubMed PMC
McKinney J.A., Wang G., Mukherjee A., Christensen L., Subramanian S.H.S., Zhao J., Vasquez K.M.. Distinct DNA repair pathways cause genomic instability at alternative DNA structures. Nat Commun. 2020; 11:236. PubMed PMC
Spiegel J., Adhikari S., Balasubramanian S.. The structure and function of DNA G-quadruplexes. Trends Chem. 2020; 2:123–136. PubMed PMC
Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C.. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol. 2011; 12:33. PubMed PMC
Petruska J., Arnheim N., Goodman MF.. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res. 1996; 24:1992–1998. PubMed PMC
Helma R., Bažantová P., Petr M., Adámik M., Renčiuk D., Tichý V., Pastuchová A., Soldánová Z., Pečinka P., Bowater R.P.et al. .. p53 binds preferentially to non-B DNA structures formed by the pyrimidine-rich strands of GAA·TTC trinucleotide repeats associated with Friedreich's ataxia. Molecules. 2019; 24:2078. PubMed PMC
Cimino-Reale G., Zaffaroni N., Folini M.. Emerging role of G-quadruplex DNA as target in anticancer therapy. Curr. Pharm. Des. 2016; 22:6612–6624. PubMed
Hänsel-Hertsch R., Simeone A., Shea A., Hui W.W.I., Zyner K.G., Marsico G., Rueda O.M., Bruna A., Martin A., Zhang X.et al. .. Landscape of G-quadruplex DNA structural regions in breast cancer. Nat. Genet. 2020; 52:878–883. PubMed
Poggi L., Richard G-F.. Alternative DNA structures in vivo: molecular evidence and remaining questions. Microbiol. Mol. Biol. Rev. 2021; 85:e00110-20. PubMed PMC
Yang C., Hu R., Li Q., Li S., Xiang J., Guo X., Wang S., Zen Y., Yang G.. Visualization of parallel G-quadruplexes in cells with a series of new developed Bis(4-aminobenzylidene)acetone derivatives. ACS Omega. 2018; 3:10487–10492. PubMed PMC
Bochman M.L., Paeschke K., Zakian V.A.. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 2012; 13:770–780. PubMed PMC
Takahashi S., Sugimoto N.. Effect of pressure on thermal stability of G-quadruplex DNA and double-stranded DNA structures. Molecules. 2013; 18:13297–13319. PubMed PMC
Yadav P., Kim N., Kumari M., Verma S., Sharma T.K., Yadav V., Kumar A.. G-Quadruplex structures in bacteria - biological relevance and potential as antimicrobial target. J. Bacteriol. 2021; 203:e0057720. PubMed PMC
Brázda V., Fojta M., Bowater R.P.. Structures and stability of simple DNA repeats from bacteria. Biochem J. 2020; 477:325–339. PubMed PMC
Ruggiero E., Richter S.N.. Viral G-quadruplexes: new frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 2020; 54:101–131. PubMed PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Brázda V.. Tracing dsDNA virus-host coevolution through correlation of their G-quadruplex-forming sequences. Int. J. Mol. Sci. 2021; 22:3433. PubMed PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.L., Brázda V.. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie. 2021; 186:13–27. PubMed
Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J.et al. .. In-depth bioinformatic analyses of human SARS-CoV-2, SARS-CoV, MERS-CoV, and other nidovirales suggest important roles of noncanonical nucleic acid structures in their lifecycles. Front. Microbiol. 2020; 11:1583. PubMed PMC
Ruggiero E., Richter S.N.. Viral G-quadruplexes: new frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 2020; 54:101–131. PubMed PMC
Li R., Hsieh C.-L., Young A., Zhang Z., Ren X., Zhao Z.. Illumina synthetic long read sequencing allows recovery of missing sequences even in the «Finished» C. elegans genome. Sci Rep. 2015; 5:10814. PubMed PMC
Kruisselbrink E., Guryev V., Brouwer K., Pontier D.B., Cuppen E., Tijsterman M.. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol. 2008; 18:900–905. PubMed
Vannutelli A., Belhamiti S., Garant J.-M., Ouangraoua A., Perreault J.-P.. Where are G-quadruplexes located in the human transcriptome. NAR Genom. Bioinform. 2020; 2:lqaa035. PubMed PMC
Maltby C.J., Schofield J.P.R., Houghton S.D., O’Kelly I., Vargas-Caballero M., Deinhardt K., Coldwell M.J.. A 5’ UTR GGN repeat controls localisation and translation of a potassium leak channel mRNA through G-quadruplex formation. Nucleic Acids Res. 2020; 48:9822–9839. PubMed PMC
Katsuda Y., Sato S.-I., Asano L., Morimura Y., Furuta T., Sugiyama H., Hagihara M., Uesugi M.. A small molecule that represses translation of G-quadruplex-containing mRNA. J. Am. Chem. Soc. 2016; 138:9037–9040. PubMed
Hirai H. Chromosomal differentiation of schistosomes: what is the message. Front. Genet. 2014; 5:301. PubMed PMC
Müller F., Wicky C., Spicher A., Tobler H.. New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell. 1991; 67:815–822. PubMed
Phan A.T. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010; 277:1107–1117. PubMed
Hänsel R., Foldynová-Trantírková S., Löhr F., Buck J., Bongartz E., Bamberg E., Schwalbe H., Dötsch V., Trantirek L.. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 2009; 131:15761–15768. PubMed
Biffi G., Tannahill D., McCafferty J., Balasubramanian S.. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013; 5:182–186. PubMed PMC
Školáková P., Foldynová-Trantírková S., Bednářová K., Fiala R., Vorlíčková M., Trantírek L.. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA. Nucleic Acids Res. 2015; 43:4733–4745. PubMed PMC
Puig Lombardi E., Holmes A., Verga D., Teulade-Fichou M.-P., Nicolas A., Londoño-Vallejo A.. Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species. Nucleic Acids Res. 2019; 47:6098–6113. PubMed PMC
Ribeiro de Almeida C., Dhir S., Dhir A., Moghaddam A.E., Sattentau Q., Meinhart A., Proudfoot N.J.. RNA helicase DDX1 converts RNA G-quadruplex structures into R-loops to promote IgH class switch recombination. Mol. Cell. 2018; 70:650–662. PubMed PMC
Ingram K., Yaremenko I.A., Krylov I.B., Hofer L., Terent’ev A.O., Keiser J.. Identification of antischistosomal leads by evaluating bridged 1,2,4,5-tetraoxanes, alphaperoxides, and tricyclic monoperoxides. J. Med. Chem. 2012; 55:8700–8711. PubMed
Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses
Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes
A sodium/potassium switch for G4-prone G/C-rich sequences